
Elizabeth M Bradshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5633881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
2	CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nature Neuroscience, 2013, 16, 848-850.	14.8	485
3	A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease. Nature Neuroscience, 2018, 21, 811-819.	14.8	422
4	A transcriptomic atlas of aged human microglia. Nature Communications, 2018, 9, 539.	12.8	375
5	Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nature Communications, 2020, 11, 6129.	12.8	371
6	Monocytes from Patients with Type 1 Diabetes Spontaneously Secrete Proinflammatory Cytokines Inducing Th17 Cells. Journal of Immunology, 2009, 183, 4432-4439.	0.8	249
7	CD33 modulates TREM2: convergence of Alzheimer loci. Nature Neuroscience, 2015, 18, 1556-1558.	14.8	134
8	CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility. Human Molecular Genetics, 2014, 23, 2729-2736.	2.9	128
9	A Local Antigen-Driven Humoral Response Is Present in the Inflammatory Myopathies. Journal of Immunology, 2007, 178, 547-556.	0.8	121
10	Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nature Communications, 2019, 10, 409.	12.8	121
11	A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Science Translational Medicine, 2017, 9, .	12.4	106
12	Concurrent detection of secreted products from human lymphocytes by microengraving: Cytokines and antigen-reactive antibodies. Clinical Immunology, 2008, 129, 10-18.	3.2	78
13	A <scp><i>TREM</i></scp> <i>1</i> variant alters the accumulation of Alzheimerâ€related amyloid pathology. Annals of Neurology, 2015, 77, 469-477.	5.3	69
14	Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLoS Computational Biology, 2020, 16, e1008120.	3.2	66
15	A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system. Brain, Behavior, and Immunity, 2020, 83, 180-191.	4.1	56
16	Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer's dementia. Science Advances, 2019, 5, eaax7331.	10.3	55
17	Tiam1/Rac1 complex controls Il17a transcription and autoimmunity. Nature Communications, 2016, 7, 13048.	12.8	38
18	Monoallelic expression of the human <i>FOXP2</i> speech gene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6848-6854.	7.1	36

Elizabeth M Bradshaw

#	Article	IF	CITATIONS
19	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. Molecular Neurodegeneration, 2020, 15, 44.	10.8	32
20	<i>Trans</i> -pQTL study identifies immune crosstalk between Parkinson and Alzheimer loci. Neurology: Genetics, 2016, 2, e90.	1.9	31
21	A cortical immune network map identifies distinct microglial transcriptional programs associated with Î ² -amyloid and Tau pathologies. Translational Psychiatry, 2021, 11, 50.	4.8	19
22	IL-27: An endogenous constitutive repressor of human monocytes. Clinical Immunology, 2020, 217, 108498.	3.2	13
23	The aging immune system in Alzheimer's and Parkinson's diseases. Seminars in Immunopathology, 2022, 44, 649-657.	6.1	13
24	Alzheimer's Disease Genetics: A Dampened Microglial Response?. Neuroscientist, 2023, 29, 245-263.	3.5	11
25	MS <i>AHI1</i> genetic risk promotes IFNγ ⁺ CD4 ⁺ T cells. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e414.	6.0	6
26	GW5074 Increases Microglial Phagocytic Activities: Potential Therapeutic Direction for Alzheimer's Disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	3
27	Genotype–phenotype correlation of T-cell subtypes reveals senescent and cytotoxic genes in Alzheimer's disease. Human Molecular Genetics, 2022, 31, 3355-3366.	2.9	2
28	O4-06-03: Genotype-phenotype studies examining the CD33 locus and amyloid biology. , 2013, 9, P692-P693.		0
29	O3-04-05: EXPRESSION QTL ANALYSIS FROM PRIMARY IMMUNE CELLS IDENTIFIES NOVEL REGULATORY EFFECTS UNDERLYING ALZHEIMER'S DISEASE SUSCEPTIBILITY. , 2014, 10, P216-P216.		0
30	O4-03-02: CORRECTING THE FUNCTIONAL CONSEQUENCES OF THE CD33 ALZHEIMER'S DISEASE RISK ALLELE USING SMALL MOLECULES. , 2014, 10, P254-P254.		0
31	[F5–03–04]: CD33 GENETIC RISK IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1448.	0.8	0