Akira Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/563374/publications.pdf

Version: 2024-02-01

178 papers 20,485 citations

63 h-index 9854 141 g-index

184 all docs

184 docs citations

times ranked

184

11478 citing authors

#	Article	IF	CITATIONS
1	Behavior of supramolecular cross-links formed by host-guest interactions in hydrogels responding to water contents., 2022, $1,100001.$		10
2	Supramolecular Polysulfide Polymers with Metal‣igand Interactions. ChemistrySelect, 2022, 7, .	0.7	4
3	Thermoresponsive Hydrogels Reinforced with Supramolecular Cellulose Filler. Chemistry Letters, 2022, 51, 145-148.	0.7	2
4	Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Molecular Systems Design and Engineering, 2022, 7, 733-745.	1.7	8
5	Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials, 2022, 14, .	3.8	33
6	One-Step Synthesis of Gelatin-Conjugated Supramolecular Hydrogels for Dynamic Regulation of Adhesion Contact and Morphology of Myoblasts. ACS Applied Polymer Materials, 2022, 4, 2595-2603.	2.0	5
7	Cellulose Nanofiber Composite Polymeric Materials with Reversible and Movable Cross-links and Evaluation of their Mechanical Properties. ACS Applied Polymer Materials, 2022, 4, 403-412.	2.0	13
8	Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Materials, 2022, 14 , .	3.8	10
9	Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. Soft Matter, 2022, 18, 5027-5036.	1.2	11
10	Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polymer Journal, 2022, 54, 1213-1223.	1.3	5
11	Supramolecular network-based self-healing polymer materials. , 2022, , 193-217.		O
12	The macroscopic shape of assemblies formed from microparticles based on host–guest interaction dependent on the guest content. Scientific Reports, 2021, 11, 6320.	1.6	2
13	Dynamics of the Topological Network Formed by Movable Crosslinks: Effect of Sliding Motion on Dielectric and Viscoelastic Relaxation Behavior. Macromolecules, 2021, 54, 3321-3333.	2.2	16
14	Material Adhesion through Direct Covalent Bond Formation Assisted by Noncovalent Interactions. ACS Applied Polymer Materials, 2021, 3, 2189-2196.	2.0	7
15	Mechano-Responsive Hydrogels Driven by the Dissociation of a Host–Guest Complex. ACS Macro Letters, 2021, 10, 971-977.	2.3	11
16	Supramolecular Polymers and Materials Formed by Host-Guest Interactions. Bulletin of the Chemical Society of Japan, 2021, 94, 2381-2389.	2.0	28
17	Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules, 2021, 54, 8067-8076.	2.2	27
18	Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polymer Journal, 2021, 53, 505-513.	1.3	13

#	Article	IF	Citations
19	X-ray crystal structures of α-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–ε-caprolactone, and β-cyclodextrin–ε-caprolactam inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 93-99.	0.9	2
20	A palladium-catalyst stabilized in the chiral environment of a monoclonal antibody in water. Chemical Communications, 2020, 56, 1605-1607.	2.2	12
21	Supramolecular complex formation of polysulfide polymers and cyclodextrins. Chemical Communications, 2020, 56, 13619-13622.	2.2	9
22	Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Science Advances, 2020, 6, .	4.7	61
23	Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polymer Chemistry, 2020, 11, 6811-6820.	1.9	19
24	Extremely Rapid Selfâ€Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host–Guest Interactions. Advanced Materials, 2020, 32, e2002008.	11.1	54
25	Supramolecular Biocomposite Hydrogels Formed by Cellulose and Host–Guest Polymers Assisted by Calcium Ion Complexes. Biomacromolecules, 2020, 21, 3936-3944.	2.6	14
26	Control of microenvironment around enzymes by hydrogels. Chemical Communications, 2020, 56, 6723-6726.	2.2	8
27	Biofunctional hydrogels based on host–guest interactions. Polymer Journal, 2020, 52, 839-859.	1.3	45
28	Reinforced polystyrene through host-guest interactions using cyclodextrin as an additive. European Polymer Journal, 2020, 134, 109807.	2.6	7
29	Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. European Polymer Journal, 2020, 134, 109806.	2.6	10
30	Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chemical Science, 2020, 11, 4322-4331.	3.7	30
31	Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chemical Communications, 2020, 56, 4381-4395.	2.2	107
32	Self-Healing Thermoplastic Polyurethane Linked via Host-Guest Interactions. Polymers, 2020, 12, 1393.	2.0	35
33	Bulk Copolymerization of Host–Guest Monomers with Liquid-Type Acrylamide Monomers for Supramolecular Materials Applications. ACS Applied Polymer Materials, 2020, 2, 1553-1560.	2.0	12
34	Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding. ACS Applied Polymer Materials, 2020, 2, 2274-2283.	2.0	27
35	Composite hydrogels reinforced by cellulose-based supramolecular filler. Polymer Degradation and Stability, 2020, 177, 109157.	2.7	22
36	Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. Polymer, 2020, 196, 122465.	1.8	20

#	Article	IF	CITATIONS
37	Palladium nanoparticle loaded \hat{l}^2 -cyclodextrin monolith as a flow reactor for concentration enrichment and conversion of pollutants based on molecular recognition. Chemical Communications, 2020, 56, 14408-14411.	2.2	12
38	Effect of Host-Guest Interaction on Swelling Behavior and Equilibrium Swollen State of Host-Guest Gel. Nihon Reoroji Gakkaishi, 2019, 47, 99-104.	0.2	5
39	Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polymer Chemistry, 2019, 10, 4519-4523.	1.9	28
40	Mechanical and self-recovery properties of supramolecular ionic liquid elastomers based on host–guest interactions and correlation with ionic liquid content. RSC Advances, 2019, 9, 22295-22301.	1.7	8
41	Supramolecular Elastomers with Movable Cross-Linkers Showing High Fracture Energy Based on Stress Dispersion. Macromolecules, 2019, 52, 6953-6962.	2.2	34
42	Development of Atroposelective Antibodies by Immunization with a Racemic Mixture of Binaphthyl Derivatives. Bulletin of the Chemical Society of Japan, 2019, 92, 1462-1466.	2.0	2
43	Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports, 2019, 9, 13551.	1.6	3
44	Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin. Polymer, 2019, 177, 208-213.	1.8	22
45	Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules, 2019, 52, 2659-2668.	2.2	83
46	Mechanical properties of supramolecular polymeric materials cross-linked by donor–acceptor interactions. Chemical Communications, 2019, 55, 3809-3812.	2.2	6
47	Cyclodextrinâ€Based Rotaxanes: from Rotaxanes to Polyrotaxanes and Further to Functional Materials. European Journal of Organic Chemistry, 2019, 2019, 3344-3357.	1.2	56
48	Preparation of Supramolecular Ionic Liquid Gels Based on Host–Guest Interactions and Their Swelling and Ionic Conductive Properties. Macromolecules, 2019, 52, 2932-2938.	2.2	23
49	Visible chiral discrimination via macroscopic selective assembly. Communications Chemistry, 2018, $1, \dots$	2.0	23
50	Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. Journal of the American Chemical Society, 2018, 140, 17308-17315.	6.6	156
51	Functional Supramolecular Materials Formed by Non-covalent Bonds. , 2018, , 183-225.		2
52	Adhesion of Dissimilar Materials through Host-Guest Interactions and Its Re-adhesion Properties. Chemistry Letters, 2018, 47, 1255-1257.	0.7	10
53	Physical and Adhesion Properties of Supramolecular Hydrogels Cross-linked by Movable Cross-linking Molecule and Host-guest Interactions. Chemistry Letters, 2018, 47, 1387-1390.	0.7	13

Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene) Tj ETQq $0\ 0\ 0\ rgBT$ /Qverlock $10\ Tf\ 50\ 62$

#	Article	IF	CITATIONS
55	Linear viscoelastic studies on a transient network formed by host–guest interaction. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1109-1117.	2.4	13
56	Mechanical Properties of Supramolecular Polymeric Materials Formed by Cyclodextrins as Host Molecules and Cationic Alkyl Guest Molecules on the Polymer Side Chain. Macromolecules, 2018, 51, 6318-6326.	2.2	34
57	A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 2018, 51, 4688-4693.	2.2	60
58	Toward a translational molecular ratchet: face-selective translation coincident with deuteration in a pseudo-rotaxane. Scientific Reports, 2018, 8, 8950.	1.6	15
59	Photo-stimuli responsive supramolecular materials using supramolecular machine. , 2018, , .		0
60	Functioning via host–guest interactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 313-330.	0.9	22
61	Preparation of Porous Polysaccharides Templated by Coordination Polymer with Three-Dimensional Nanochannels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11373-11379.	4.0	25
62	A pseudo-rotaxane of \hat{l}_{\pm} -cyclodextrin and a two-station axis molecule consisting of pyridinium and decamethylene moieties, and its deuteration in deuterium oxide. Tetrahedron, 2017, 73, 4988-4993.	1.0	3
63	Multifunctional Stimuli-Responsive Supramolecular Materials with Stretching, Coloring, and Self-Healing Properties Functionalized via Host–Guest Interactions. Macromolecules, 2017, 50, 4144-4150.	2.2	96
64	Visualization of Chiral Binaphthyl Recognition by Atroposelective Antibodies with Thermoresponsive Polymers. Chemistry Letters, 2017, 46, 1173-1175.	0.7	3
65	Direct Chiral Separation of Binaphthyl Derivatives Using Atroposelective Antibodies. ChemistrySelect, 2017, 2, 2622-2625.	0.7	5
66	Supramolecular Materials Cross-Linked by Host–Guest Inclusion Complexes: The Effect of Side Chain Molecules on Mechanical Properties. Macromolecules, 2017, 50, 3254-3261.	2.2	72
67	Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Scientific Reports, 2017, 7, 7660.	1.6	46
68	Movable Cross-Linked Polymeric Materials from Bulk Polymerization of Reactive Polyrotaxane Cross-Linker with Acrylate Monomers. Macromolecules, 2017, 50, 5695-5700.	2.2	54
69	Supramolecular Polymeric Materials Containing Cyclodextrins. Chemical and Pharmaceutical Bulletin, 2017, 65, 330-335.	0.6	29
70	Thermal ring-opening polymerization of an unsymmetrical silicon-bridged [1] ferrocenophane in coordination nanochannels. Chemical Communications, 2017, 53, 6945-6948.	2.2	12
71	Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nature Chemistry, 2016, 8, 625-632.	6.6	366
72	Highly Flexible, Tough, and Selfâ€Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromolecular Rapid Communications, 2016, 37, 86-92.	2.0	207

#	Article	IF	CITATIONS
73	Direct Adhesion of Dissimilar Materials Using Sonogashira Cross-coupling Reaction. Chemistry Letters, 2016, 45, 1250-1252.	0.7	10
74	Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. CheM, 2016, 1, 766-775.	5.8	121
75	The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chemical Communications, 2016, 52, 5156-5159.	2.2	32
76	Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel. Scientific Reports, 2015, 5, 16254.	1.6	8
77	Selfâ€Healing, Expansion–Contraction, and Shapeâ€Memory Properties of a Preorganized Supramolecular Hydrogel through Host–Guest Interactions. Angewandte Chemie - International Edition, 2015, 54, 8984-8987.	7.2	454
78	Adhesion between Semihard Polymer Materials Containing Cyclodextrin and Adamantane Based on Host–Guest Interactions. Macromolecules, 2015, 48, 732-738.	2.2	81
79	Direct covalent bond formation between materials using copper(<scp>i</scp>)-catalyzed azide alkyne cycloaddition reactions. RSC Advances, 2015, 5, 56130-56135.	1.7	14
80	A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nature Communications, 2014, 5, 4622.	5.8	140
81	Supramolecular Adhesives to Hard Surfaces: Adhesion Between Host Hydrogels and Guest Glass Substrates Through Molecular Recognition. Macromolecular Rapid Communications, 2014, 35, 1646-1652.	2.0	64
82	Redoxâ€Responsive Macroscopic Gel Assembly Based on Discrete Dual Interactions. Angewandte Chemie - International Edition, 2014, 53, 3617-3621.	7.2	115
83	Supramolecular Polymeric Materials via Cyclodextrin–Guest Interactions. Accounts of Chemical Research, 2014, 47, 2128-2140.	7.6	751
84	A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction. Scientific Reports, 2014, 4, 6348.	1.6	15
85	Redoxâ€Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host–Guest Interactions. Angewandte Chemie - International Edition, 2013, 52, 5731-5735.	7.2	199
86	Preorganized Hydrogel: Selfâ€Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guestâ€Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups. Advanced Materials, 2013, 25, 2849-2853.	11.1	540
87	Highly Elastic Supramolecular Hydrogels Using Host–Guest Inclusion Complexes with Cyclodextrins. Macromolecules, 2013, 46, 4575-4579.	2.2	102
88	pHâ€Responsive Selfâ€Assembly by Molecular Recognition on a Macroscopic Scale. Macromolecular Rapid Communications, 2013, 34, 1062-1066.	2.0	65
89	Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester. Macromolecules, 2013, 46, 1939-1947.	2.2	40
90	Reversible self-assembly of gels through metal-ligand interactions. Scientific Reports, 2013, 3, .	1.6	53

#	Article	IF	Citations
91	Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications, 2012, 3, 1270.	5.8	622
92	Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition. ACS Macro Letters, 2012, 1, 1083-1085.	2.3	56
93	Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties. Beilstein Journal of Organic Chemistry, 2012, 8, 1594-1600.	1.3	30
94	Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nature Communications, 2012, 3, 831.	5.8	104
95	Photoswitchable gel assembly based on molecular recognition. Nature Communications, 2012, 3, 603.	5.8	412
96	Recognition of polymer side chains by cyclodextrins. Polymer Chemistry, 2011, 2, 2146.	1.9	62
97	Macroscopic Observations of Molecular Recognition: Discrimination of the Substituted Position on the Naphthyl Group by Polyacrylamide Gel Modified with β-Cyclodextrin. Langmuir, 2011, 27, 13790-13795.	1.6	41
98	Redox-responsive self-healing materials formed from host–guest polymers. Nature Communications, 2011, 2, 511.	5.8	1,207
99	Modulation of reversible self-assembling of dumbbell-shaped poly(ethylene glycol)s and \hat{l}^2 -cyclodextrins: precipitation and heat-induced supramolecular crosslinking. Polymer Journal, 2011, 43, 893-900.	1.3	5
100	Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules. Macromolecules, 2011, 44, 2395-2399.	2.2	76
101	Macroscopic self-assembly through molecular recognition. Nature Chemistry, 2011, 3, 34-37.	6.6	710
102	Heatâ€induced Supramolecular Crosslinking of Dumbbellâ€shaped PEG with βâ€CD Dimer Based on Reversible Looseâ€fit Rotaxanation. Macromolecular Chemistry and Physics, 2011, 212, 211-215.	1.1	8
103	Photoregulated Switching of the Recognition Site of αâ€Cyclodextrin in a Side Chain Polyrotaxane Bearing Two Recognition Sites Linked with Oligo(ethylene glycol). Macromolecular Chemistry and Physics, 2011, 212, 1032-1038.	1.1	18
104	Photochemically Controlled Supramolecular Curdlan/Singleâ€Walled Carbon Nanotube Composite Gel: Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. European Journal of Organic Chemistry, 2011, 2011, 2801-2806.	1.2	25
105	Lightâ€Switchable Janus [2]Rotaxanes Based on αâ€Cyclodextrin Derivatives Bearing Two Recognition Sites Linked with Oligo(ethylene glycol). Chemistry - an Asian Journal, 2010, 5, 2281-2289.	1.7	42
106	A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle. Journal of Organic Chemistry, 2010, 75, 1040-1046.	1.7	55
107	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie, 2010, 122, 7623-7626.	1.6	90
108	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie - International Edition, 2010, 49, 7461-7464.	7.2	407

#	Article	IF	Citations
109	Preparation of Loose-fit Polyrotaxane Composed of β-Cyclodextrin and Poly(ethylene glycol) Derivatives through the Slipping–Expanding Protocol. Chemistry Letters, 2010, 39, 892-893.	0.7	7
110	Switching from <i>altro</i> -α-Cyclodextrin Dimer to <i>pseudo</i> [1]Rotaxane Dimer through Tumbling. Organic Letters, 2010, 12, 1284-1286.	2.4	52
111	Supramolecular Polymers Based on Cyclodextrins and Their Derivatives. Australian Journal of Chemistry, 2010, 63, 599.	0.5	29
112	Formation of Side-Chain Hetero-Polypseudorotaxane Composed of \hat{l}_{\pm} - and \hat{l}^2 -Cyclodextrins with a Water-Soluble Polymer Bearing Two Recognition Sites. Macromolecules, 2010, 43, 1706-1713.	2.2	35
113	Cyclodextrin-based supramolecular polymers. Chemical Society Reviews, 2009, 38, 875.	18.7	768
114	Face selective translation of a cyclodextrin ring along an axle. Chemical Communications, 2009, , 5515.	2.2	27
115	Polymeric Rotaxanes. Chemical Reviews, 2009, 109, 5974-6023.	23.0	837
116	Photoinduced Hydrogen-Evolution System with an Antibody–Porphyrin Complex as a Photosensitizer. Bulletin of the Chemical Society of Japan, 2009, 82, 1341-1346.	2.0	20
117	Stereoselective Complex Formation between Polybutadiene and Cyclodextrins in Bulk. Macromolecular Rapid Communications, 2008, 29, 910-913.	2.0	11
118	Switching between Supramolecular Dimer and Nonthreaded Supramolecular Self-Assembly of Stilbene Amide- $\hat{l}\pm$ -Cyclodextrin by Photoirradiation. Journal of the American Chemical Society, 2008, 130, 5024-5025.	6.6	80
119	Chemical Sensors Based on Cyclodextrin Derivatives. Sensors, 2008, 8, 4961-4982.	2.1	255
120	Molecular Puzzle Ring: <i>pseudo</i> [1]Rotaxane from a Flexible Cyclodextrin Derivative. Journal of the American Chemical Society, 2008, 130, 17062-17069.	6.6	45
121	Functionalized Antibodies as Biosensing Materials and Catalysts. Chemistry Letters, 2008, 37, 1184-1189.	0.7	10
122	Contraction of Supramolecular Double-Threaded Dimer Formed by \hat{l} ±-Cyclodextrin with a Long Alkyl Chain. Organic Letters, 2007, 9, 1053-1055.	2.4	41
123	Thermal and Photochemical Switching of Conformation of Poly(ethylene glycol)-Substituted Cyclodextrin with an Azobenzene Group at the Chain End. Journal of the American Chemical Society, 2007, 129, 6396-6397.	6.6	146
124	Self-Threading and Dethreading Dynamics of Poly(ethylene glycol)-Substituted Cyclodextrins with Different Chain Lengths. Macromolecules, 2007, 40, 3256-3262.	2.2	26
125	Chemically-Responsive Solâ^'Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. Journal of the American Chemical Society, 2007, 129, 4878-4879.	6.6	246
126	Face-Selective [2]- and [3]Rotaxanes: Kinetic Control of the Threading Direction of Cyclodextrins. Chemistry - A European Journal, 2007, 13, 7091-7098.	1.7	54

#	Article	IF	Citations
127	Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based \hat{l}_{\pm} -Cyclodextrin and Azobenzene Polymers. Journal of the American Chemical Society, 2006, 128, 2226-2227.	6.6	237
128	Asymmetric hydrogenation with antibody-achiral rhodium complex. Organic and Biomolecular Chemistry, 2006, 4, 3571.	1.5	74
129	Self-Threading of a Poly(ethylene glycol) Chain in a Cyclodextrin-Ring:Â Control of the Exchange Dynamics by Chain Length. Journal of the American Chemical Society, 2006, 128, 8994-8995.	6.6	46
130	pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl β-Cyclodextrin and Cucurbit[7]uril. Organic Letters, 2006, 8, 3159-3162.	2.4	110
131	Enhancement of Photoinduced Electron Transfer from Porphyrin to Methyl Viologen by Binding of an Antibody for Porphyrin. Chemistry Letters, 2006, 35, 1126-1127.	0.7	9
132	Interaction of cyclodextrins with side chains of water soluble polymers: A simple model for biological molecular recognition and its utilization for stimuli-responsive systems. Polymer, 2006, 47, 6011-6027.	1.8	54
133	Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes containing Poly(thiophene)s. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 45-53.	1.6	22
134	Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers. Angewandte Chemie - International Edition, 2006, 45, 4361-4365.	7.2	247
135	Cyclodextrin-Based Side-Chain Polyrotaxane with Unidirectional Inclusion in Aqueous Media. Angewandte Chemie - International Edition, 2006, 45, 4605-4608.	7.2	57
136	Redox-Responsive Hydrogel System Using the Molecular Recognition of \hat{l}^2 -Cyclodextrin. Macromolecular Rapid Communications, 2006, 27, 238-241.	2.0	121
137	Rotaxanes with unidirectional cyclodextrin array. Journal of Physics Condensed Matter, 2006, 18, S1809-S1816.	0.7	24
138	Kinetic Control of Threading of Cyclodextrins onto Axle Molecules. Journal of the American Chemical Society, 2005, 127, 12186-12187.	6.6	100
139	Photoresponsive Hydrogel System Using Molecular Recognition of α-Cyclodextrin. Macromolecules, 2005, 38, 5223-5227.	2.2	216
140	Complex Formation between Polyisoprene and Cyclodextrins. Macromolecular Rapid Communications, 2004, 25, 1159-1162.	2.0	44
141	Peroxidase Activity of Cationic Metalloporphyrin-Antibody Complexes. Chemistry - A European Journal, 2004, 10, 6179-6186.	1.7	40
142	Crystal Structure of the Complex of \hat{l}^2 -Cyclodextrin with Bithiophene and Their Oxidative Polymerization in Water. Macromolecules, 2004, 37, 3962-3964.	2.2	40
143	Cyclodextrin-Initiated Polymerization of Cyclic Esters in Bulk: Formation of Polyester-Tethered Cyclodextrins. Journal of the American Chemical Society, 2004, 126, 13588-13589.	6.6	84
144	Inclusion Complex Formation and Hydrolysis of Lactones by Cyclodextrins. Chemistry Letters, 2003, 32, 1122-1123.	0.7	20

#	Article	IF	CITATIONS
145	Complex Formation of Polybutadiene with Cyclodextrins. Macromolecular Rapid Communications, 2001, 22, 763-767.	2.0	43
146	Complex Formation of Poly($\hat{l}\mu$ -caprolactone) with Cyclodextrins. Macromolecules, 2000, 33, 4472-4477.	2.2	159
147	Daisy Chain Necklace:Â Tri[2]rotaxane Containing Cyclodextrins. Journal of the American Chemical Society, 2000, 122, 9876-9877.	6.6	160
148	An Electric Trap:Â A New Method for Entrapping Cyclodextrin in a Rotaxane Structure. Journal of the American Chemical Society, 2000, 122, 3797-3798.	6.6	124
149	A Cyclodextrin-Based Molecular Shuttle Containing Energetically Favored and Disfavored Portions in Its Dumbbell Component. Organic Letters, 2000, 2, 1353-1356.	2.4	108
150	Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Methylated Cyclodextrins. Journal of Physical Chemistry B, 1999, 103, 2607-2613.	1.2	40
151	Preparation and Characterization of Inclusion Complexes of Poly(alkyl vinyl ether) with Cyclodextrins. Bulletin of the Chemical Society of Japan, 1998, 71, 535-542.	2.0	37
152	Non-ionic [2] rotaxanes containing methylated \hat{l}_{\pm} -cyclodextrins. Chemical Communications, 1997, , 1413-1414.	2.2	48
153	Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins. Macromolecules, 1997, 30, 7115-7118.	2.2	147
154	Recognition of Alkyl Groups on a Polymer Chain by Cyclodextrins. Macromolecules, 1997, 30, 5181-5182.	2.2	104
154	Recognition of Alkyl Groups on a Polymer Chain by Cyclodextrins. Macromolecules, 1997, 30, 5181-5182. Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102.	1.9	104
	Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36,		
155	Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102. Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers,	1.9	44
155 156	Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102. Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers, 1997, 34, 183-188. Complex formation of poly(É-caprolactone) with cyclodextrin. Macromolecular Rapid	1.9 5.1	67
156 157	Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102. Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers, 1997, 34, 183-188. Complex formation of poly(É-caprolactone) with cyclodextrin. Macromolecular Rapid Communications, 1997, 18, 535-539. Molecular Recognition: Preparation of Polyrotaxan and Tubular Polymer from Cyclodextrin.	1.9 5.1 2.0	4467109
155 156 157	Peroxidation of Pyrogallol by Antibodyâ "Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102. Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers, 1997, 34, 183-188. Complex formation of poly(É-caprolactone) with cyclodextrin. Macromolecular Rapid Communications, 1997, 18, 535-539. Molecular Recognition: Preparation of Polyrotaxan and Tubular Polymer from Cyclodextrin. Polymers for Advanced Technologies, 1997, 8, 241-249. Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins.	1.9 5.1 2.0 1.6	44 67 109 15
155 156 157 158	Peroxidation of Pyrogallol by Antibodyâ^Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102. Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers, 1997, 34, 183-188. Complex formation of poly(É-caprolactone) with cyclodextrin. Macromolecular Rapid Communications, 1997, 18, 535-539. Molecular Recognition: Preparation of Polyrotaxan and Tubular Polymer from Cyclodextrin. Polymers for Advanced Technologies, 1997, 8, 241-249. Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 1996, 29, 5611-5614.	1.9 5.1 2.0 1.6	44 67 109 15

#	Article	IF	Citations
163	Formation of Inclusion Complexes of Monodisperse Oligo(ethylene glycol)s with alphaCyclodextrin. Macromolecules, 1994, 27, 4538-4543.	2.2	147
164	Sol–Gel Transition during Inclusion Complex Formation between α-Cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution. Polymer Journal, 1994, 26, 1019-1026.	1.3	304
165	Preparation and Characterization of a Polyrotaxane Consisting of Monodisperse Poly(ethylene) Tj ETQq1 1 0.784	314 rgBT / 6.6	lOyerlock 10
166	Formation of Inclusion Complexes of Oligoethylene and Its Derivatives with 1±-Cyclodextrin. Bulletin of the Chemical Society of Japan, 1994, 67, 2808-2818.	2.0	82
167	Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 1993, 364, 516-518.	13.7	612
168	Preparation and characterization of polyrotaxanes containing many threaded .alphacyclodextrins. Journal of Organic Chemistry, 1993, 58, 7524-7528.	1.7	154
169	Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between .betacyclodextrin and .gammacyclodextrin. Macromolecules, 1993, 26, 5267-5268.	2.2	122
170	Preparation and properties of inclusion complexes of polyethylene glycol with .alphacyclodextrin. Macromolecules, 1993, 26, 5698-5703.	2.2	466
171	Complex Formation between Poly(methyl vinyl ether) and \hat{I}^3 -Cyclodextrin. Chemistry Letters, 1993, 22, 237-240.	0.7	71
172	The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 1992, 356, 325-327.	13.7	1,305
173	Monoclonal Antibodies as Tailor-Made Hosts for Porphyrins. Chemistry Letters, 1990, 19, 917-918.	0.7	18
174	Complex formation between cyclodextrin and poly(propylene glycol). Journal of the Chemical Society Chemical Communications, 1990, , 1322.	2.0	200
175	Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 1990, 23, 2821-2823.	2.2	875
176	Interaction of Cyclodextrin-Containing Polymers with Fluorescent Compounds. Macromolecules, 1977, 10, 676-681.	2.2	83
177	Cyclodextrin-Containing Polymers. 1. Preparation of Polymers. Macromolecules, 1976, 9, 701-704.	2.2	129
178	Time–strain inseparability in multiaxial stress relaxation of supramolecular gels formed <i>via</i> host–guest interactions. Soft Matter, 0, , .	1.2	2