Ekaterina Pomerantseva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5633521/publications.pdf

Version: 2024-02-01

47 papers

4,321 citations

331670 21 h-index 289244 40 g-index

47 all docs

47 docs citations

times ranked

47

6409 citing authors

#	Article	IF	CITATIONS
1	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	12.6	1,119
2	Two-dimensional heterostructures for energy storage. Nature Energy, 2017, 2, .	39.5	747
3	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	16.0	710
4	The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy and Environmental Science, 2012, 5, 9558.	30.8	169
5	Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy, 2018, 44, 476-488.	16.0	145
6	Alkali-induced crumpling of Ti ₃ C ₂ T _x (MXene) to form 3D porous networks for sodium ion storage. Chemical Communications, 2018, 54, 4533-4536.	4.1	135
7	Ordering Heterogeneity of [MnO6] Octahedra in Tunnel-Structured MnO2 and Its Influence on Ion Storage. Joule, 2019, 3, 471-484.	24.0	123
8	Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining. ACS Nano, 2012, 6, 6422-6432.	14.6	116
9	Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Materials Research Letters, 2018, 6, 230-235.	8.7	115
10	Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Materials, 2018, 11, 30-37.	18.0	108
11	Chemically Preintercalated Bilayered K _{<i>x</i>} V ₂ O ₅ Â <i>n</i> H ₂ O Nanobelts as a High-Performing Cathode Material for K-Ion Batteries. ACS Energy Letters, 2018, 3, 562-567.	17.4	104
12	Voltage-Gated Ions Sieving through 2D MXene Ti ₃ C ₂ T _{<i>x</i>} Membranes. ACS Applied Nano Materials, 2018, 1, 3644-3652.	5 . 0	102
13	Highâ€Capacity Allâ€Solidâ€State Sodium Metal Battery with Hybrid Polymer Electrolytes. Advanced Energy Materials, 2018, 8, 1801885.	19.5	87
14	Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy, 2019, 64, 103961.	16.0	78
15	Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32313-32322.	8.0	67
16	Deciphering the Atomic Patterns Leading to MnO2 Polymorphism. CheM, 2019, 5, 1793-1805.	11.7	46
17	Effect of aging and hydrothermal treatment on electrochemical performance of chemically pre-intercalated Na–V–O nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7754-7761.	10.3	44
18	Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization. Energy and Environmental Materials, 2020, 3, 398-404.	12.8	42

#	Article	IF	CITATIONS
19	Influence of operating conditions and cathode parameters on desalination performance of hybrid CDI systems. Desalination, 2019, 452, 1-8.	8.2	36
20	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	4.1	25
21	MXene-Derived Bilayered Vanadium Oxides with Enhanced Stability in Li-lon Batteries. ACS Applied Energy Materials, 2020, 3, 10892-10901.	5.1	21
22	Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries. ACS Applied Energy Materials, 2020, 3, 3835-3844.	5.1	21
23	Annealing-Assisted Enhancement of Electrochemical Stability of Na-Preintercalated Bilayered Vanadium Oxide Electrodes in Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 1063-1075.	5.1	20
24	Bilayered vanadium oxide as the host material for reversible beyond lithium ion intercalation. Advanced Materials Letters, 2017, 8, 679-688.	0.6	20
25	Revealing the Atomic Structures of Exposed Lateral Surfaces for Polymorphic Manganese Dioxide Nanowires. Small Structures, 2021, 2, 2000091.	12.0	18
26	Prediction of optimal structural water concentration for maximized performance in tunnel manganese oxide electrodes. Physical Chemistry Chemical Physics, 2018, 20, 9480-9487.	2.8	12
27	Composite Li-ion battery cathodes formed via integration of carbon nanotubes or graphene nanoplatelets into chemical preintercalation synthesis of bilayered vanadium oxides. Journal of Alloys and Compounds, 2022, 903, 163929.	5.5	12
28	Brittle fracture to recoverable plasticity: polytypism-dependent nanomechanics in todorokite-like nanobelts. Nanoscale Advances, 2019, 1, 357-366.	4.6	9
29	Phase transformation and electrochemical charge storage properties of vanadium oxide/carbon composite electrodes synthesized via integration with dopamine. Journal of the American Ceramic Society, 2023, 106, 120-132.	3.8	9
30	Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology. Ionics, 2019, 25, 493-502.	2.4	8
31	The effect of chemically preintercalated alkali ions on the structure of layered titanates and their electrochemistry in aqueous energy storage systems. Journal of Materials Chemistry A, 2020, 8, 18220-18231.	10.3	8
32	Synthesis strategies toward improved ordering of [MnO6] octahedra in tunnel structured 2Â×Â3 and 2Â×Â4 MnO2. Scripta Materialia, 2021, 195, 113713.	5.2	8
33	Hierarchically structured MoO2/dopamine-derived carbon spheres as intercalation electrodes for lithium-ion batteries. Materials Today Chemistry, 2022, 24, 100783.	3.5	7
34	Tunable nanomechanical performance regimes in ceramic nanowires. Nanotechnology, 2019, 30, 47LT02.	2.6	6
35	Creation of controllable cationic and anionic defects in tunnel manganese oxide nanowires for enhanced oxygen evolution reaction. Polyhedron, 2019, 171, 32-40.	2.2	5
36	Free-standing bilayered vanadium oxide films synthesized by liquid exfoliation of chemically preintercalated Î'-LixV2O5·nH2O. Materials Advances, 2021, 2, 2711-2718.	5.4	3

#	Article	IF	CITATIONS
37	The Dopamine Assisted Synthesis of MoO3/Carbon Electrodes With Enhanced Capacitance in Aqueous Electrolyte. Frontiers in Chemistry, 2022, 10, 873462.	3.6	3
38	Acid-leached \hat{l}_{\pm} -MnO2nanowires for electrochemical energy storage. , 2014, , .		2
39	Effect of 1D diffusion channel size and ionic content on Li+ ion and Na+ ion diffusion in tunnel manganese oxides. Materialia, 2021, 15, 101013.	2.7	2
40	Reversible intercalation of lithium and sodium ions into layered and tunnel structured manganese oxides: one-dimensional versus two-dimensional diffusion. , 2017, , .		2
41	The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes. , 2017, , .		2
42	Synthesis of hybrid layered electrode materials via chemical pre-intercalation of linear organic molecules. , $2018, , .$		2
43	Chemical preintercalation synthesis approach for the formation of new layered tungsten oxides. Journal of Materials Science, 2022, 57, 7814-7826.	3.7	2
44	Tunnel Intergrowth Structures in Manganese Dioxide and Their Influence on Ion Storage. Microscopy and Microanalysis, 2018, 24, 1500-1501.	0.4	1
45	Layered manganese oxides as electrodes for water desalination via hybrid capacitive deionization. , 2018, , .		O
46	Effect of annealing on electrochemical stability of chemically preintercalated bilayered vanadium oxide cathodes in batteries. , $2019, \ldots$		0
47	HCDI performance of Na-2x3 and Na-2x4 nanowires for water desalination., 2019,,.		O