Tetsuaki Nishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632979/publications.pdf

Version: 2024-02-01

80 papers 1,020 citations

394421 19 h-index 27 g-index

82 all docs 82 docs citations

times ranked

82

260 citing authors

#	Article	IF	CITATIONS
1	Local structure, glass transition, structural relaxation, and crystallization of functional oxide glasses investigated by M¶ssbauer spectroscopy and DTA. Journal of Materials Science: Materials in Electronics, 2021, 32, 23655-23689.	2.2	5
2	Local structure and conductivity of highly conductive vanadate glasses containing different metal oxides. Journal of Materials Science: Materials in Electronics, 2020, 31, 22881-22892.	2.2	3
3	119Sn and 57Fe MÓ§ssbauer study of highly conductive vanadate glass. Journal of Materials Science: Materials in Electronics, 2019, 30, 8847-8854.	2,2	4
4	Adsorption and Removal Technology for Cs ⁺ in Aqueous Solution Using Poly-2-acrylamido-2-methyl-1-propanesolfonic acid (PAMPS) Hydrogel. Radioisotopes, 2019, 68, 331-337.	0.2	0
5	Structural relaxation and electrical conductivity of molybdovanadate glass. Journal of Materials Science: Materials in Electronics, 2018, 29, 2654-2659.	2.2	4
6	Effect of Substitutional Doping of Tin in Highly Conductive Barium Iron Vanadate Glass. Physica Status Solidi (A) Applications and Materials Science, 2018, 216, 1800157.	1.8	6
7	The relationship between SnII fraction and visible light activated photocatalytic activity of SnOx·SiO2 glass studied by Mössbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1859-1865.	1.5	3
8	Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal. Applied Water Science, 2017, 7, 4281-4286.	5 . 6	5
9	Highly conductive barium iron vanadate glass containing different metal oxides. Pure and Applied Chemistry, 2017, 89, 419-428.	1.9	10
10	Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure and Applied Chemistry, 2017, 89, 535-544.	1.9	13
11	Water purification using porous ceramics prepared by recycling volcanic ash and waste glass. Applied Water Science, 2017, 7, 4109-4115.	5.6	3
12	A relationship between electrical conductivity and structural relaxation of 10SnO ₂ ·10Fe ₂ 3&mi	ddqt;10P8	<şub>2&l
13	heat-treatment. Journal of the Ceramic Society of Japan, 2015, 123, 121-128. Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method. Hyperfine Interactions, 2015, 232, 51-58.	0.5	3
14	Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass. Croatica Chemica Acta, 2015, 88, 427-435.	0.4	13
15	Mössbauer study of conductive oxide glass. AIP Conference Proceedings, 2014, , .	0.4	4
16	$\text{M}\tilde{\text{A}}\text{\P}\text{ssbauer}$ study of metallic iron and iron oxide nanoparticles having environmental purifying ability. , 2014, , .		3
17	57Fe-MÃ \P ssbauer study of electrically conductive alkaline iron vanadate glasses. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 453-459.	1.5	8
18	Visible light activated photo-catalytic effect and local structure of iron silicate glass prepared by sol-gel method. Hyperfine Interactions, 2014, 226, 747-753.	0.5	13

#	Article	IF	Citations
19	Electrical conductivity and local structure of lithium iron tungsten vanadate glass. Hyperfine Interactions, 2014, 226, 755-763.	0.5	O
20	Mössbauer study of new vanadate glass with large charge-discharge capacity. Hyperfine Interactions, 2014, 226, 765-770.	0.5	5
21	Local structure and water cleaning ability of iron oxide nanoparticles prepared by hydro-thermal reaction. Hyperfine Interactions, 2014, 226, 489-497.	0.5	1
22	Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-MA¶ssbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 1-7.	1.5	12
23	Electrical conductivity and local structure of lithium tin iron vanadate glass. Hyperfine Interactions, 2013, 219, 141-145.	0.5	6
24	Enhancement of electrical conductivity and chemical durability of 20R2O•10Fe2O3•xWO3•(70â^'x)V2O5 glass (R=Na, K) caused by structural relaxation. Journal of Non-Crystalline Solids, 2013, 378, 227-233.	3.1	12
25	Water cleaning ability and local structure of iron-containing soda-lime silicate glass. Hyperfine Interactions, 2013, 218, 41-45.	0.5	6
26	Decomposition mechanism of methylene blue caused by metallic iron-maghemite mixture. Hyperfine Interactions, 2013, 218, 47-52.	0.5	6
27	Effect of the structural change of an iron–iron oxide mixture on the decomposition of trichloroethylene. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 23-30.	1.5	6
28	A Possibility of Heavy-Metal Recycling by Utilizing Hydrogels. Transactions of the Materials Research Society of Japan, 2012, 20thAnniv, 23-28.	0.2	1
29	Reclassification of CK chondrites confirmed by elemental analysis and Fe-Mössbauer spectroscopy. Hyperfine Interactions, 2012, 208, 75-78.	0.5	1
30	Electrical conductivity and local structure of barium manganese iron vanadate glass. Hyperfine Interactions, 2012, 207, 61-65.	0.5	11
31	Mechanically strengthened new Hagi porcelain developed by controlling the chemical environment of iron. Hyperfine Interactions, 2012, 211, 173-180.	0.5	1
32	M^{-} ouml;ssbauer Study of Water-Resistive Conductive Vanadate Glass. Radioisotopes, 2012, 61, 463-468.	0.2	15
33	Kadanoff-Baym Approach to Entropy Production in $\langle i \rangle O \langle i \rangle (\langle i \rangle N \langle i \rangle)$ Theory with Next-to-Leading Order Self-Energy. Progress of Theoretical Physics, 2011, 126, 249-267.	2.0	4
34	A Possibility of Heavy-Metal Recycling by Utilizing Hydrogels. Transactions of the Materials Research Society of Japan, 2010, 35, 449-454.	0.2	5
35	Reduction of iron(III) in annealed asbestos/chrysotile. Hyperfine Interactions, 2008, 186, 161-166.	0.5	1
36	57Fe Moessbauer and DTA study of R2O 2FeO V2O5 P2O5 glasses (R = Li, Na). Journal of the Ceramic Society of Japan, 2008, 116, 637-640.	1.1	1

3

#	Article	IF	Citations
37	Harmful-Heavy-Metal-Anion Adsorbing Property of Acrylamide/Dimethylaminoethylacrylatemethylchloride Gel. Transactions of the Materials Research Society of Japan, 2008, 33, 455-458.	0.2	4
38	Side-Chain Structural Effect of a Harmful-Heavy-Metal-Anion Adsorbing Gel. Transactions of the Materials Research Society of Japan, 2008, 33, 463-466.	0.2	4
39	A Possibility of Hydro gels as Environment Purifying Materials. Transactions of the Materials Research Society of Japan, 2008, 33, 369-372.	0.2	4
40	Selective Adsorption of Heavy Metal Cations and Anions from their Aqueous Solution Mixture with Hydrogels. Transactions of the Materials Research Society of Japan, 2008, 33, 459-461.	0.2	4
41	Crystallization and Structural Relaxation of xBaO (90-x)V2O5 10Fe2O3 Glasses Accompanying an Enhancement of the Elctric Conductivity. Journal of the Ceramic Society of Japan, 2007, 115, 776-779.	1.1	23
42	Utilization of Ion Capturing Property of Gels for Environmental Purification. Ferroelectrics, 2007, 348, 161-165.	0.6	2
43	Corelationship between local structure and water purifying ability of iron-containing waste glasses. Hyperfine Interactions, 2006, 166, 429-436.	0.5	6
44	Solidification of Hazardous Heavy Metal Ions with Soda-Lime Glass. Characterization of Iron and Zinc in the Waste Glass Journal of the Ceramic Society of Japan, 2000, 108, 245-248.	1.3	15
45	'TgDELTA. Rule' Applied to Semiconducting Vanadate Glasses Containing Different Amounts of Fe2O3 Journal of the Ceramic Society of Japan, 1999, 107, 408-412.	1.3	7
46	Heat-resistivity and Local Structure of New Nuclear Waste Glass Composed of Calcium Aluminate and Lead Phosphate. Radioisotopes, 1999, 48, 313-319.	0.2	5
47	Crystallization mechanism of aluminoferrate glass accompanying a precipitation of nanocrystals of dicalcium ferrite (Ca2Fe2O5) and mayenite (12CaO·7Al2O3). Journal of Materials Chemistry, 1997, 7, 1801-1806.	6.7	29
48	Occupation of tungsten site by iron in sodium tungstate glasses. Journal of Non-Crystalline Solids, 1996, 194, 23-33.	3.1	30
49	Structural relaxation and crystallization of semiconducting vanadate glass accompanying a jump of the electrical conductivity. Journal of Materials Chemistry, 1996, 6, 1889.	6.7	25
50	Verification of the â€~â€~Tg-Δ Rule'' in Potassium Silicate and Sodium Tungstate Glasses. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1996, 51, 620-626.	1.5	5
51	Coloration of Fluorophosphate Glasses Containing Fluorescein Molecules by Heat Treatment or Gamma Ray Irradiation. Japanese Journal of Applied Physics, 1995, 34, L507-L510.	1.5	2
52	Low-Temperature 119Sn-Mössbauer Study of Superconducting Bi4Sr3.5Ca2.5Cu4Sn0.015O16-yCeramic (2212 Phase). Japanese Journal of Applied Physics, 1992, 31, L471-L473.	1.5	9
53	Comparison of IR-Transmission Method with the Conventional DTA Method (Kissinger Plot) in the Crystallization Study of Iron Tellurite Glass. Bulletin of the Chemical Society of Japan, 1992, 65, 1927-1931.	3.2	18
54	FTIR Investigations of the crystallization of IR-transmitting glasses: application to calcium gallate glass. Journal of Materials Chemistry, 1992, 2, 733.	6.7	23

#	Article	IF	Citations
55	Local Structure, Tg, and IR Transparency of Potassium Titanate Glasses and the Local Structure of Calcium Titanate Ceramics. Bulletin of the Chemical Society of Japan, 1991, 64, 154-160.	3.2	9
56	119Sn-Mössbauer Study on the Normal Lattice Vibration of Superconducting Bi(Pb)2Sr2Ca2Cu3Sn0.015O10-y. Japanese Journal of Applied Physics, 1991, 30, L735-L738.	1.5	15
57	A Linear Relationship between the Glass Transition Temperature and Local Distortion of Calcium Gallate, Barium Gallate, and Calcium Aluminate Glasses. Bulletin of the Chemical Society of Japan, 1990, 63, 548-553.	3.2	29
58	Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses. Journal of Materials Science, 1990, 25, 3546-3550.	3.7	41
59	Precipitation of Mayenite in 60CaO·35Al2O3·5Fe2O3Glass Annealed at Several Temperatures Below and Above the Glass Transition Temperature. Japanese Journal of Applied Physics, 1990, 29, 1293-1297.	1.5	22
60	Structural study of semiconducting and superionic conducting silver vanadate glasses. Journal of Materials Science, 1989, 24, 1687-1692.	3.7	17
61	Structural Study of Semiconducting Silver Vanadate Glasses by Means of Low-Temperature Mössbauer Spectroscopy. Journal of the Ceramic Society of Japan, 1989, 97, 284-288.	1.3	9
62	Mössbauer Spectroscopic Study of Superconducting Y–Ba–Cu(Fe)–O Ceramics and Gamma-Ray Irradiation Effect. Bulletin of the Chemical Society of Japan, 1989, 62, 61-67.	3.2	13
63	Structural Study of Potassium Gallate Glasses by Mössbauer Spectroscopy and Differential Thermal Analysis. Bulletin of the Chemical Society of Japan, 1988, 61, 2347-2351.	3.2	15
64	Structural Study of Lithium, Magnesium, and Barium Vanadate Glasses by Means of Mössbauer Spectroscopy. Bulletin of the Chemical Society of Japan, 1988, 61, 2343-2346.	3.2	14
65	Structural Study of Na2O–TeO2Glasses by Mössbauer Spectroscopy and Differential Thermal Analysis. Bulletin of the Chemical Society of Japan, 1988, 61, 4093-4097.	3.2	23
66	Mössbauer and DTA Studies on the Structure of Semiconducting Sodium Vanadate Glasses. Bulletin of the Chemical Society of Japan, 1987, 60, 2887-2889.	3.2	18
67	Mössbauer and DTA Studies of Semiconducting Potassium Vanadate Glasses Containing Iron. Bulletin of the Chemical Society of Japan, 1987, 60, 941-946.	3.2	24
68	Application of mössbauer spectroscopy to the structural study of semiconducting vanadate classes. Journal of Non-Crystalline Solids, 1987, 95-96, 241-246.	3.1	16
69	Application of Mössbauer spectroscopy and DTA to a structural study of semiconducting P2O5-V2O5 glasses. Journal of Non-Crystalline Solids, 1987, 94, 229-237.	3.1	14
70	Mössbauer and DTA Studies of K2SO4–ZnSO4–Fe2(SO4)3Glasses. Bulletin of the Chemical Society of Japan, 1986, 59, 2789-2794.	3.2	20
71	Mössbauer, Raman, and DTA Studies on the Structure of BaF2–ZrF4–FeF2Glasses. Bulletin of the Chemical Society of Japan, 1985, 58, 2255-2259.	3.2	30
72	MÖSSBAUER STUDY OF KCl–ZnCl2–FeCl2GLASSES. Chemistry Letters, 1984, 13, 1683-1686.	1.3	4

Tetsuaki Nishida

#	Article	IF	CITATION
73	Structural Study of Germanate Glasses by 119Sn Mössbauer Spectroscopy. Bulletin of the Chemical Society of Japan, 1984, 57, 3566-3570.	3.2	32
74	Mössbauer and ESR Studies of Potassium Borophosphate Glasses. Bulletin of the Chemical Society of Japan, 1983, 56, 439-442.	3.2	18
75	$M\tilde{A}\P$ ssbauer spectroscopic study of potassium borate glasses at low temperatures. Journal of Non-Crystalline Solids, 1981, 43, 221-228.	3.1	36
76	\tilde{MAq} ssbauer and ESR studies of non-bridging oxygens in potassium phosphate glasses. Journal of Non-Crystalline Solids, 1981, 43, 115-122.	3.1	40
77	Mössbauer spectroscopic study of gamma-ray irradiated potassium phosphate glasses. Journal of Non-Crystalline Solids, 1981, 43, 123-128.	3.1	29
78	\tilde{MAq} ssbauer Spectroscopic Study of Potassium Borosilicate Glasses at Low Temperatures. Bulletin of the Chemical Society of Japan, 1981, 54, 3735-3738.	3.2	25
79	Mössbauer study of the fraction of non-bridging oxygens in potassium borate glasses. Journal of Non-Crystalline Solids, 1980, 41, 161-170.	3.1	38
80	Mössbauer spectroscopic study of the formation of non-bridging oxygen in the potassium borate glasses. Journal of Non-Crystalline Solids, 1980, 37, 37-43.	3.1	46