
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mössbauer spectroscopic study of the formation of non-bridging oxygen in the potassium borate glasses. Journal of Non-Crystalline Solids, 1980, 37, 37-43.	3.1	46
2	Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses. Journal of Materials Science, 1990, 25, 3546-3550.	3.7	41
3	Mössbauer and ESR studies of non-bridging oxygens in potassium phosphate glasses. Journal of Non-Crystalline Solids, 1981, 43, 115-122.	3.1	40
4	Mössbauer study of the fraction of non-bridging oxygens in potassium borate glasses. Journal of Non-Crystalline Solids, 1980, 41, 161-170.	3.1	38
5	Mössbauer spectroscopic study of potassium borate glasses at low temperatures. Journal of Non-Crystalline Solids, 1981, 43, 221-228.	3.1	36
6	Structural Study of Germanate Glasses by119Sn Mössbauer Spectroscopy. Bulletin of the Chemical Society of Japan, 1984, 57, 3566-3570.	3.2	32
7	Mössbauer, Raman, and DTA Studies on the Structure of BaF2–ZrF4–FeF2Glasses. Bulletin of the Chemical Society of Japan, 1985, 58, 2255-2259.	3.2	30
8	Occupation of tungsten site by iron in sodium tungstate glasses. Journal of Non-Crystalline Solids, 1996, 194, 23-33.	3.1	30
9	Mössbauer spectroscopic study of gamma-ray irradiated potassium phosphate glasses. Journal of Non-Crystalline Solids, 1981, 43, 123-128.	3.1	29
10	A Linear Relationship between the Glass Transition Temperature and Local Distortion of Calcium Gallate, Barium Gallate, and Calcium Aluminate Glasses. Bulletin of the Chemical Society of Japan, 1990, 63, 548-553.	3.2	29
11	Crystallization mechanism of aluminoferrate glass accompanying a precipitation of nanocrystals of dicalcium ferrite (Ca2Fe2O5) and mayenite (12CaO·7Al2O3). Journal of Materials Chemistry, 1997, 7, 1801-1806.	6.7	29
12	Mössbauer Spectroscopic Study of Potassium Borosilicate Glasses at Low Temperatures. Bulletin of the Chemical Society of Japan, 1981, 54, 3735-3738.	3.2	25
13	Structural relaxation and crystallization of semiconducting vanadate glass accompanying a jump of the electrical conductivity. Journal of Materials Chemistry, 1996, 6, 1889.	6.7	25
14	Mössbauer and DTA Studies of Semiconducting Potassium Vanadate Glasses Containing Iron. Bulletin of the Chemical Society of Japan, 1987, 60, 941-946.	3.2	24
15	Structural Study of Na2O–TeO2Classes by Mössbauer Spectroscopy and Differential Thermal Analysis. Bulletin of the Chemical Society of Japan, 1988, 61, 4093-4097.	3.2	23
16	FTIR Investigations of the crystallization of IR-transmitting glasses: application to calcium gallate glass. Journal of Materials Chemistry, 1992, 2, 733.	6.7	23
17	Crystallization and Structural Relaxation of xBaO (90-x)V2O5 10Fe2O3 Glasses Accompanying an Enhancement of the Elctric Conductivity. Journal of the Ceramic Society of Japan, 2007, 115, 776-779.	1.1	23
18	Precipitation of Mayenite in 60CaO·35Al2O3·5Fe2O3Glass Annealed at Several Temperatures Below and Above the Glass Transition Temperature. Japanese Journal of Applied Physics, 1990, 29, 1293-1297.	1.5	22

#	Article	IF	CITATIONS
19	M¶ssbauer and DTA Studies of K2SO4–ZnSO4–Fe2(SO4)3Glasses. Bulletin of the Chemical Society of Japan, 1986, 59, 2789-2794.	3.2	20
20	Mössbauer and ESR Studies of Potassium Borophosphate Glasses. Bulletin of the Chemical Society of Japan, 1983, 56, 439-442.	3.2	18
21	M¶ssbauer and DTA Studies on the Structure of Semiconducting Sodium Vanadate Glasses. Bulletin of the Chemical Society of Japan, 1987, 60, 2887-2889.	3.2	18
22	Comparison of IR-Transmission Method with the Conventional DTA Method (Kissinger Plot) in the Crystallization Study of Iron Tellurite Glass. Bulletin of the Chemical Society of Japan, 1992, 65, 1927-1931.	3.2	18
23	Structural study of semiconducting and superionic conducting silver vanadate glasses. Journal of Materials Science, 1989, 24, 1687-1692.	3.7	17
24	Application of m¶ssbauer spectroscopy to the structural study of semiconducting vanadate classes. Journal of Non-Crystalline Solids, 1987, 95-96, 241-246.	3.1	16
25	Structural Study of Potassium Gallate Glasses by M¶ssbauer Spectroscopy and Differential Thermal Analysis. Bulletin of the Chemical Society of Japan, 1988, 61, 2347-2351.	3.2	15
26	119Sn-Mössbauer Study on the Normal Lattice Vibration of Superconducting Bi(Pb)2Sr2Ca2Cu3Sn0.015O10-y. Japanese Journal of Applied Physics, 1991, 30, L735-L738.	1.5	15
27	Solidification of Hazardous Heavy Metal Ions with Soda-Lime Glass. Characterization of Iron and Zinc in the Waste Glass Journal of the Ceramic Society of Japan, 2000, 108, 245-248.	1.3	15
28	M^ ^ouml;ssbauer Study of Water-Resistive Conductive Vanadate Glass. Radioisotopes, 2012, 61, 463-468.	0.2	15
29	Application of Mössbauer spectroscopy and DTA to a structural study of semiconducting P2O5-V2O5 glasses. Journal of Non-Crystalline Solids, 1987, 94, 229-237.	3.1	14
30	Structural Study of Lithium, Magnesium, and Barium Vanadate Glasses by Means of Mössbauer Spectroscopy. Bulletin of the Chemical Society of Japan, 1988, 61, 2343-2346.	3.2	14
31	Mössbauer Spectroscopic Study of Superconducting Y–Ba–Cu(Fe)–O Ceramics and Gamma-Ray Irradiation Effect. Bulletin of the Chemical Society of Japan, 1989, 62, 61-67.	3.2	13
32	Visible light activated photo-catalytic effect and local structure of iron silicate glass prepared by sol-gel method. Hyperfine Interactions, 2014, 226, 747-753.	0.5	13
33	Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure and Applied Chemistry, 2017, 89, 535-544.	1.9	13
34	Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass. Croatica Chemica Acta, 2015, 88, 427-435.	0.4	13
35	Enhancement of electrical conductivity and chemical durability of 20R2O•10Fe2O3•xWO3•(70â^'x)V2O5 glass (R=Na, K) caused by structural relaxation. Journal of Non-Crystalline Solids, 2013, 378, 227-233.	3.1	12
36	Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-MA¶ssbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 1-7.	1.5	12

#	Article	IF	CITATIONS
37	Electrical conductivity and local structure of barium manganese iron vanadate glass. Hyperfine Interactions, 2012, 207, 61-65.	0.5	11
38	Highly conductive barium iron vanadate glass containing different metal oxides. Pure and Applied Chemistry, 2017, 89, 419-428.	1.9	10
39	Structural Study of Semiconducting Silver Vanadate Glasses by Means of Low-Temperature Mössbauer Spectroscopy. Journal of the Ceramic Society of Japan, 1989, 97, 284-288.	1.3	9
40	Local Structure,Tg, and IR Transparency of Potassium Titanate Glasses and the Local Structure of Calcium Titanate Ceramics. Bulletin of the Chemical Society of Japan, 1991, 64, 154-160.	3.2	9
41	Low-Temperature119Sn-Mössbauer Study of Superconducting Bi4Sr3.5Ca2.5Cu4Sn0.015O16-yCeramic (2212 Phase). Japanese Journal of Applied Physics, 1992, 31, L471-L473.	1.5	9
42	57Fe-Mössbauer study of electrically conductive alkaline iron vanadate glasses. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 453-459.	1.5	8
43	'TgDELTA. Rule' Applied to Semiconducting Vanadate Glasses Containing Different Amounts of Fe2O3 Journal of the Ceramic Society of Japan, 1999, 107, 408-412.	1.3	7
44	Corelationship between local structure and water purifying ability of iron-containing waste glasses. Hyperfine Interactions, 2006, 166, 429-436.	0.5	6
45	Electrical conductivity and local structure of lithium tin iron vanadate glass. Hyperfine Interactions, 2013, 219, 141-145.	0.5	6
46	Water cleaning ability and local structure of iron-containing soda-lime silicate glass. Hyperfine Interactions, 2013, 218, 41-45.	0.5	6
47	Decomposition mechanism of methylene blue caused by metallic iron-maghemite mixture. Hyperfine Interactions, 2013, 218, 47-52.	0.5	6
48	Effect of the structural change of an iron–iron oxide mixture on the decomposition of trichloroethylene. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 23-30.	1.5	6
49	Effect of Substitutional Doping of Tin in Highly Conductive Barium Iron Vanadate Glass. Physica Status Solidi (A) Applications and Materials Science, 2018, 216, 1800157.	1.8	6
50	Verification of the â€~ã€~Tg-Δ Rule'' in Potassium Silicate and Sodium Tungstate Glasses. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1996, 51, 620-626.	1.5	5
51	Mössbauer study of new vanadate glass with large charge-discharge capacity. Hyperfine Interactions, 2014, 226, 765-770.	0.5	5
52	A relationship between electrical conductivity and structural relaxation of 10SnO ₂ ·10Fe ₂ O ₃ ∣	dot;10P&	lt;sub>28
-	heat-treatment. Journal of the Ceramic Society of Japan, 2015, 123, 121-128.		-
53	Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal. Applied Water Science, 2017, 7, 4281-4286.	5.6	5
54	Local structure, glass transition, structural relaxation, and crystallization of functional oxide glasses investigated by MA¶ssbauer spectroscopy and DTA. Journal of Materials Science: Materials in Electronics, 2021, 32, 23655-23689.	2.2	5

#	Article	IF	CITATIONS
55	A Possibility of Heavy-Metal Recycling by Utilizing Hydrogels. Transactions of the Materials Research Society of Japan, 2010, 35, 449-454.	0.2	5
56	Heat-resistivity and Local Structure of New Nuclear Waste Glass Composed of Calcium Aluminate and Lead Phosphate. Radioisotopes, 1999, 48, 313-319.	0.2	5
57	MÖSSBAUER STUDY OF KCl–ZnCl2–FeCl2GLASSES. Chemistry Letters, 1984, 13, 1683-1686.	1.3	4
58	Kadanoff-Baym Approach to Entropy Production in <i>O</i> (<i>N</i>) Theory with Next-to-Leading Order Self-Energy. Progress of Theoretical Physics, 2011, 126, 249-267.	2.0	4
59	Mössbauer study of conductive oxide glass. AIP Conference Proceedings, 2014, , .	0.4	4
60	Structural relaxation and electrical conductivity of molybdovanadate glass. Journal of Materials Science: Materials in Electronics, 2018, 29, 2654-2659.	2.2	4
61	119Sn and 57Fe MÓ§ssbauer study of highly conductive vanadate glass. Journal of Materials Science: Materials in Electronics, 2019, 30, 8847-8854.	2.2	4
62	Harmful-Heavy-Metal-Anion Adsorbing Property of Acrylamide/Dimethylaminoethylacrylatemethylchloride Gel. Transactions of the Materials Research Society of Japan, 2008, 33, 455-458.	0.2	4
63	Side-Chain Structural Effect of a Harmful-Heavy-Metal-Anion Adsorbing Gel. Transactions of the Materials Research Society of Japan, 2008, 33, 463-466.	0.2	4
64	A Possibility of Hydro gels as Environment Purifying Materials. Transactions of the Materials Research Society of Japan, 2008, 33, 369-372.	0.2	4
65	Selective Adsorption of Heavy Metal Cations and Anions from their Aqueous Solution Mixture with Hydrogels. Transactions of the Materials Research Society of Japan, 2008, 33, 459-461.	0.2	4
66	Mössbauer study of metallic iron and iron oxide nanoparticles having environmental purifying ability. , 2014, , .		3
67	Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method. Hyperfine Interactions, 2015, 232, 51-58.	0.5	3
68	The relationship between SnII fraction and visible light activated photocatalytic activity of SnOx·SiO2 glass studied by Mössbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1859-1865.	1.5	3
69	Water purification using porous ceramics prepared by recycling volcanic ash and waste glass. Applied Water Science, 2017, 7, 4109-4115.	5.6	3
70	Local structure and conductivity of highly conductive vanadate glasses containing different metal oxides. Journal of Materials Science: Materials in Electronics, 2020, 31, 22881-22892.	2.2	3
71	Coloration of Fluorophosphate Glasses Containing Fluorescein Molecules by Heat Treatment or Gamma Ray Irradiation. Japanese Journal of Applied Physics, 1995, 34, L507-L510.	1.5	2
72	Utilization of Ion Capturing Property of Gels for Environmental Purification. Ferroelectrics, 2007, 348, 161-165.	0.6	2

#	Article	IF	CITATIONS
73	Reduction of iron(III) in annealed asbestos/chrysotile. Hyperfine Interactions, 2008, 186, 161-166.	0.5	1
74	57Fe Moessbauer and DTA study of R2O 2FeO V2O5 P2O5 glasses (R = Li, Na). Journal of the Ceramic Society of Japan, 2008, 116, 637-640.	1.1	1
75	A Possibility of Heavy-Metal Recycling by Utilizing Hydrogels. Transactions of the Materials Research Society of Japan, 2012, 20thAnniv, 23-28.	0.2	1
76	Reclassification of CK chondrites confirmed by elemental analysis and Fe-Mössbauer spectroscopy. Hyperfine Interactions, 2012, 208, 75-78.	0.5	1
77	Mechanically strengthened new Hagi porcelain developed by controlling the chemical environment of iron. Hyperfine Interactions, 2012, 211, 173-180.	0.5	1
78	Local structure and water cleaning ability of iron oxide nanoparticles prepared by hydro-thermal reaction. Hyperfine Interactions, 2014, 226, 489-497.	0.5	1
79	Electrical conductivity and local structure of lithium iron tungsten vanadate glass. Hyperfine Interactions, 2014, 226, 755-763.	0.5	0
80	Adsorption and Removal Technology for Cs ⁺ in Aqueous Solution Using Poly-2-acrylamido-2-methyl-1-propanesolfonic acid (PAMPS) Hydrogel. Radioisotopes, 2019, 68, 331-337.	0.2	0