Doyeol Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632729/publications.pdf

Version: 2024-02-01

188	3,625	29 h-index	54
papers	citations		g-index
189	189	189	1959
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Experimental realization of Schumacher's information geometric Bell inequality. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 405, 127444.	2.1	8
2	Quantum mechanical rotation of a photon polarization by Earthâ \in TM s gravitational field. Npj Quantum Information, 2021, 7, .	6.7	2
3	Temperatureâ€Dependent Polarized Photoluminescence from câ€plane InGaN/GaN Multiple Quantum Wells Grown on Stripeâ€Shaped Cavityâ€Engineered Sapphire Substrate. Physica Status Solidi (B): Basic Research, 2020, 257, 1900526.	1.5	1
4	Effects of GaN capping layer on carrier occupation and interband transition probability of vertically coupled InGaN/GaN quantum dots. Physica B: Condensed Matter, 2020, 578, 411846.	2.7	0
5	Quantum circuit optimization using quantum Karnaugh map. Scientific Reports, 2020, 10, 15651.	3.3	21
6	Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices. Electronics (Switzerland), 2020, 9, 1256.	3.1	1
7	Intrinsically p-type cuprous iodide semiconductor for hybrid light-emitting diodes. Scientific Reports, 2020, 10, 3995.	3.3	26
8	Strain relaxation effects on TE-polarized light emission and in-plane polarization ratio in c-plane ultraviolet AlGaN/AlN quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114112.	2.7	1
9	Effect of Coupled Quantum-Dot Insertion on the Radiative Recombination Probability of Wurtzite InGaN/GaN Quantum Dots. Journal of the Korean Physical Society, 2020, 76, 55-58.	0.7	O
10	Speedup of Grover's search algorithm and closed timelike curves. Quantum Science and Technology, 2020, 5, 045011.	5.8	1
11	Theoretical study of optical properties of non-polar BAlGaN/AlN quantum wells lattice-matched to AlN. Solid State Communications, 2019, 290, 67-69.	1.9	2
12	Strain and built-in potential effects on optical properties of wurtzite GaN/AllnN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 112-115.	2.7	2
13	Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices. Superlattices and Microstructures, 2018, 117, 413-417.	3.1	3
14	Hawking effects as a noisy quantum channel. Journal of the Korean Physical Society, 2018, 72, 201-207.	0.7	1
15	A model for the InGaAs/InP single photon avalanche diodes with multiple-quantum wells in the charge multiplication region. Journal of the Korean Physical Society, 2018, 72, 289-293.	0.7	1
16	Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells. Optics Communications, 2018, 417, 76-78.	2.1	3
17	P-type wurtzite GaN/AlGaN quantum well structures for normal incidence inter-subband photodetectors at 1.55 µm. Applied Physics Express, 2018, 11, 114001.	2.4	О
18	Unruh effect as a noisy quantum channel. Physical Review A, 2018, 98, .	2.5	8

#	Article	IF	CITATIONS
19	Dip-Shaped AlGaN/AlN Light-Emitting Diodes With Delta-Layer Containing Boron. IEEE Photonics Technology Letters, 2017, 29, 1042-1045.	2.5	2
20	Effects of a delta-layer insertion on the ultraviolet light emission characteristics of III-nitride quantum well structures. Superlattices and Microstructures, 2017, 112, 665-670.	3.1	3
21	Intersubband absorption of p-type wurtzite GaN/AlN quantum well for fiber-optics telecommunication. Journal of Applied Physics, 2017, 122, 184303.	2.5	3
22	Intersubband transition in lattice-matched BGaN/AlN quantum well structures with high absorption coefficients. Optics Express, 2017, 25, 3143.	3.4	9
23	Theoretical studies on light emission characteristics of high-efficiency BlnGaN/GaN quantum well structures with blue spectral range. Superlattices and Microstructures, 2016, 96, 150-154.	3.1	3
24	Effects of spontaneous polarization on optical properties of ultraviolet BAlGaN/AlN quantum well structures. , 2016, , .		0
25	Reply to Comment on â€~Magnetic bead detection using nano-transformers'. Nanotechnology, 2016, 27, 418002.	2.6	0
26	Intersubband absorption coefficients of GaN/AlN and strain-compensated InGaN/InAlN quantum well structures. Superlattices and Microstructures, 2016, 100, 508-513.	3.1	3
27	Theoretical Studies on TM-Polarized Light Emission for Ultraviolet BAlGaN/AlN Optoelectronic Devices. IEEE Photonics Technology Letters, 2016, 28, 2153-2155.	2.5	10
28	Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Scientific Reports, 2016, 6, 20718.	3.3	37
29	Effect of boron incorporation on light emission characteristics of UV BAlGaN/AlN quantum well structures. Applied Physics Express, 2016, 9, 021001.	2.4	4
30	Full wave finite-difference time-domain study of lossless acoustic bipolar cylindrical cloak with compressed geometry and complementary media. Journal of Applied Physics, $2015,118,118$	2.5	3
31	Theoretical study of a two-dimensional electron gas in wurtzite ZnO/MgZnO heterostructures and comparison with experiment. Journal of the Korean Physical Society, 2015, 67, 1844-1847.	0.7	3
32	FDTD Study of Half Cloak in Bipolar Cylindrical Shape With Compressed Geometry and Complementary Media. IEEE Transactions on Antennas and Propagation, 2015, 63, 2317-2320.	5.1	2
33	Optical polarization characteristics of m-plane GaN/AlGaN quantum well structures grown on m-plane SiC substrate. Solid State Communications, 2015, 223, 16-18.	1.9	0
34	Effects of wetting layer on exciton binding energy of strained CdTe/ZnTe pyramidal quantum dots. Solid State Communications, 2015, 204, 61-63.	1.9	4
35	Investigation of humidity-dependent size control of local anodic oxidation on graphene by using atomic force microscopy. Journal of the Korean Physical Society, 2015, 66, 617-620.	0.7	3
36	Optical Gain Characteristics in GaAsPN/GaPN Quantum Well Lasers for Silicon Integration. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 153-159.	2.9	2

#	Article	IF	Citations
37	Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1948.	2.1	4
38	Internal field effects on electronic and optical properties of ZnO/BeZnO quantum well structures. Physica B: Condensed Matter, 2014, 441, 12-16.	2.7	13
39	Optical Emission Characteristics of Pseudopolarization-Matched Green AllnGaN/InGaN Quantum Well Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-8.	2.9	4
40	Optical polarization characteristics of m-plane InGaN/GaN quantum well structures and comparison with experiment. Applied Physics Letters, 2013, 103, 101107.	3.3	3
41	High optical gain of l–VII semiconductor quantum wells for efficient light-emitting devices. Applied Physics Letters, 2013, 102, 121114.	3.3	13
42	Crystal orientation effect on intersubband transition properties of (11n)-oriented ZnCdTe/ZnTe semiconductor quantum dots. Physica B: Condensed Matter, 2013, 420, 36-39.	2.7	0
43	Electronic structure of p(2 \tilde{A} — 3) Ag films on Si(100). Journal of the Korean Physical Society, 2013, 62, 86-91.	0.7	3
44	Quantum-state cloning in the presence of a closed timelike curve. Physical Review A, 2013, 88, .	2.5	22
45	Full-wave finite-difference time-domain analysis of the invisibility cloak mapped to a line segment with isotropic complementary media. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2148.	2.1	4
46	Dispersive full-wave finite-difference time-domain analysis of the bipolar cylindrical cloak based on the effective medium approach. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 140.	2.1	6
47	Hybrid InGaN/CdZnO quantum well structures for optoelectronic applications in the short wavelength spectral region. Physica Status Solidi (B): Basic Research, 2013, 250, 378-381.	1.5	3
48	High optical polarization ratio of semipolar ($202\hat{A}^-1\hat{A}^-$)-oriented InGaN/GaN quantum wells and comparison with experiment. Journal of Applied Physics, 2012, 112, .	2.5	8
49	High-efficiency InGaN/GaN light-emitting diodes with electron injector. Semiconductor Science and Technology, 2012, 27, 115003.	2.0	8
50	Black hole state evolution, final state and Hawking radiation. Classical and Quantum Gravity, 2012, 29, 224007.	4.0	3
51	Spontaneous emission and optical gain characteristics of blue InGaAlN/InGaN quantum well structures with reduced internal field. Journal of Applied Physics, 2012, 112, 043107.	2.5	6
52	Comparison of light emission in InGaN/GaN light-emitting diodes with graded, triangular, and parabolic quantum-well structures. Journal of the Korean Physical Society, 2012, 60, 505-508.	0.7	10
53	Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak. Journal of the Korean Physical Society, 2012, 60, 1349-1360.	0.7	3
54	Light emission enhancement in blue InGaAlN/InGaN quantum well structures. Applied Physics Letters, 2011, 99, .	3.3	35

#	Article	IF	CITATIONS
55	Effect of indirect interband absorption in Ge/SiGe quantum wells. Journal of Applied Physics, 2011, 110, 083119.	2.5	8
56	Implicit Continuous Current–Voltage Model for Surrounding-Gate Metal–Oxide–Semiconductor Field-Effect Transistors Including Interface Traps. IEEE Transactions on Electron Devices, 2011, 58, 2520-2524.	3.0	13
57	Spontaneous emission rate of green strainâ€compensated InGaN/InGaN LEDs using InGaN substrate. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 195-198.	1.8	35
58	Calculation of permittivity tensors for invisibility devices by effective medium approach in general relativity. Journal of Modern Optics, 2011, 58, 700-710.	1.3	7
59	Explicit Continuous Current–Voltage (<i>I</i> – <i>V</i>) Models for Fully-Depleted Surrounding-Gate MOSFETs (SGMOSFETs) with a Finite Doping Body. Journal of Nanoscience and Nanotechnology, 2010, 10, 3316-3320.	0.9	2
60	Analytical Threshold Voltage Model Including Effective Conducting Path Effect (ECPE) for Surrounding-Gate MOSFETs (SGMOSFETs) With Localized Charges. IEEE Transactions on Electron Devices, 2010, 57, 3176-3180.	3.0	29
61	Enhancement of optical gain in Li:CdZnO/ZnMgO quantum well lasers. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2652-2654.	2.7	2
62	Temperature Dependent Transport Study of a Single-Wall Carbon Nanotube Network., 2010,,.		0
63	Enhancement of light power for strain-compensated hybrid InGaN/InGaN/MgZnO light-emitting diodes. Applied Physics Letters, 2010, 97, 121107.	3.3	2
64	Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers. Applied Physics Letters, 2010, 96, 051106.	3.3	29
65	Magnetic bead detection using nano-transformers. Nanotechnology, 2010, 21, 465501.	2.6	3
66	Temperature Dependent Study of Random Telegraph Noise in Gate-All-Around PMOS Silicon Nanowire Field-Effect Transistors. IEEE Nanotechnology Magazine, 2010, 9, 754-758.	2.0	14
67	Influence of polar face on optical properties of staggered 440 nm InGaN/InGaN/GaN quantum-well light-emitting diodes. , 2010, , .		0
68	Effects of Black Hole Evaporation on the Quantum Entangled Sate. Journal of the Korean Physical Society, 2010, 57, 725-731.	0.7	0
69	Electronic and optical properties of staggered InGaN/InGaN quantumâ€well lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2637-2640.	1.8	20
70	Electrical transport properties of a single wall carbon nanotube network. Physica Status Solidi (B): Basic Research, 2009, 246, 744-746.	1.5	4
71	A SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model. IEEE Nanotechnology Magazine, 2009, 8, 643-649.	2.0	16
72	High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	84

#	Article	IF	CITATIONS
73	Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency. Applied Physics Letters, 2009, 95, 063507.	3.3	64
74	Internal field engineering in CdZnO/MgZnO quantum well structures. Applied Physics Letters, 2009, 94,	3.3	16
75	Transport Properties of a DNA-Conjugated Single-Wall Carbon Nanotube Field-Effect Transistor. Japanese Journal of Applied Physics, 2009, 48, 06FD08.	1.5	9
76	A Bottom-gate Depletion-mode Nanowire Field Effect Transistor(NWFET) Model Including a Schottky Diode Model. Journal of the Korean Physical Society, 2009, 55, 1162-1166.	0.7	2
77	Internal Efficiency of Staggered InGaN/InGaN Quantum-Well Light-Emitting Diodes. Journal of the Korean Physical Society, 2009, 54, 2464-2467.	0.7	0
78	Electrical Transport Properties of Lambda Deoxyribonucleic AcidFilms. Journal of the Korean Physical Society, 2009, 55, 352-355.	0.7	0
79	Electronic transport properties of a single-wall carbon nanotube field effect transistor with deoxyribonucleic acid conjugation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1115-1117.	2.7	12
80	Impurity scattering effects on transport through gate-all-around Si nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1526-1529.	2.7	0
81	Hybrid integration of GaAs/AlGaAs in-plane-gate resonant tunneling and field effect transistors. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2160-2162.	2.7	3
82	Optical gain in InGaNâ^InGaAlN quantum well structures with zero internal field. Applied Physics Letters, 2008, 92, 171115.	3.3	26
83	Fabrication of one-dimensional devices by a combination of AC dielectrophoresis and electrochemical deposition. Nanotechnology, 2008, 19, 105305.	2.6	16
84	Microwave Characterization of a Single Wall Carbon Nanotube Bundle. Japanese Journal of Applied Physics, 2008, 47, 4965-4968.	1.5	15
85	Faraday's Induction Experiment in Nano-Transformers. IEEE Nanotechnology Magazine, 2008, 7, 120-123.	2.0	4
86	Effects of Confinement on the Valley Splitting of Si Quantum Structures. Journal of the Korean Physical Society, 2008, 53, 3322-3327.	0.7	2
87	Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron Transistor. Japanese Journal of Applied Physics, 2007, 46, 2592-2595.	1.5	2
88	Electronic and Optical Properties of \${m a}\$- and \${m m}\$-Plane Wurtzite InGaN–GaN Quantum Wells. IEEE Journal of Quantum Electronics, 2007, 43, 1175-1182.	1.9	117
89	Observation of three-dimensional shell filling in cylindrical silicon nanowire single electron transistors. Applied Physics Letters, 2007, 90, 182102.	3.3	11
90	Electronic and Optical Properties of 1.55 Âμm GalnNAs/GaAs Quantum-Well Structures. Japanese Journal of Applied Physics, 2007, 46, 152-155.	1.5	0

#	Article	IF	CITATIONS
91	Hawking–Unruh effect and the entanglement of two-mode squeezed states in Riemannian space–time. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 202-205.	2.1	20
92	Wigner Rotation of Spin $1/2$ Particles in Rindler Spacetime. Journal of the Korean Physical Society, 2007, 50, 6-9.	0.7	2
93	Transport Study of Lambda DNA Molecules. Journal of the Korean Physical Society, 2007, 50, 902.	0.7	1
94	Modeling of Semiconductor Nanowire Field-Effect Transistors Considering Schottky-Barrier-Height Lowering. Journal of the Korean Physical Society, 2007, 51, 298.	0.7	4
95	Wigner Rotation of a Spin 1/2 Particle near the Event Horizon of a Schwarzschild Black Hole. Journal of the Korean Physical Society, 2007, 51, 470-474.	0.7	1
96	Equivalent circuit model of semiconductor nanowire diode by SPICE. Journal of Nanoscience and Nanotechnology, 2007, 7, 4089-93.	0.9	0
97	Fabrication of poly-silicon nano-wire transistors on plastic substrates. Journal of Nanoscience and Nanotechnology, 2007, 7, 4150-3.	0.9	0
98	Optical gain and luminescence of a ZnO-MgZnO quantum well. IEEE Photonics Technology Letters, 2006, 18, 349-351.	2.5	13
99	Gate bias controlled NDR in an in-plane-gate quantum dot transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 532-535.	2.7	5
100	DC Transport Characteristics of Lambda DNA Molecules and Effect of RF Signals. Japanese Journal of Applied Physics, 2006, 45, 5471-5473.	1.5	0
101	Final state boundary condition of the Schwarzschild black hole. Physical Review D, 2006, 74, .	4.7	34
102	Entanglement generates entanglement: entanglement transfer by interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 338, 192-196.	2.1	9
103	Optical Gain in Wurtzite ZnO/ZnMgO Quantum Well Lasers. Japanese Journal of Applied Physics, 2005, 44, L1403-L1406.	1.5	3
104	Electrical Transport Properties of Au-Doped Deoxyribonucleic Acid Molecules. Japanese Journal of Applied Physics, 2005, 44, 2623-2625.	1.5	9
105	Optical Gain in GaN Quantum Well Lasers with Quaternary AllnGaN Barriers. Japanese Journal of Applied Physics, 2005, 44, 7460-7463.	1.5	15
106	Spontaneous and piezoelectric polarization effects in wurtzite ZnOâ^•MgZnO quantum well lasers. Applied Physics Letters, 2005, 87, 253509.	3.3	100
107	Non-Markovian gain and luminescence of an InGaN-AllnGaN quantum-well with many-body effects. IEEE Journal of Quantum Electronics, 2005, 41, 1253-1259.	1.9	5
108	Non-Markovian decoherence: complete positivity and decomposition. Journal of Modern Optics, 2005, 52, 935-943.	1.3	7

#	Article	IF	CITATIONS
109	Intervalley interactions in Si quantum dots. Journal of Applied Physics, 2005, 98, 033709.	2.5	16
110	A wide dynamic range analog predistortion-type linearizer using self-cancellation scheme. IEEE Microwave and Wireless Components Letters, 2005, 15, 661-663.	3.2	6
111	Formation of Electrical Interconnects by Self-Trapping of Deoxyribonucleic Acid Molecules. Japanese Journal of Applied Physics, 2004, 43, 3803-3805.	1.5	7
112	Generation of Local Magnetic Field by Nano Electro-Magnets. Japanese Journal of Applied Physics, 2004, 43, 2054-2056.	1.5	14
113	Microwave design and characterization of a cryogenic dip probe for time-domain measurements of nanodevices. Review of Scientific Instruments, 2004, 75, 2455-2460.	1.3	9
114	Effect of Ti thickness on contact resistance between GaN nanowiresand Tiâ^•Au electrodes. Applied Physics Letters, 2004, 85, 1636-1638.	3.3	22
115	Fabrication and characterization of metal-semiconductor field-effect-transistor-type quantum devices. Journal of Applied Physics, 2004, 96, 704-708.	2.5	4
116	Exciton Binding Energies in Zincblende GaN/AlGaN Quantum Wells. Japanese Journal of Applied Physics, 2004, 43, 140-143.	1.5	7
117	Transport measurements through stacked InAs self-assembled quantum dots in time domain. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 460-463.	2.7	4
118	Finite element analysis of valence band structures in quantum wires. Journal of Applied Physics, 2004, 96, 2055-2062.	2.5	22
119	Single-electron tunneling in silicon-on-insulator nano-wire transistors. Superlattices and Microstructures, 2003, 34, 245-251.	3.1	1
120	Electrical conduction measurement of thiol modified DNA molecules. Superlattices and Microstructures, 2003, 34, 433-438.	3.1	17
121	Transport study of ultra-thin SOI MOSFETs. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 39-43.	2.7	3
122	Relativistic entanglement and Bell's inequality. Physical Review A, 2003, 67, .	2.5	100
123	Magnetotransport measurements through stacked InAs self-assembled quantum dots. Applied Physics Letters, 2003, 82, 1230-1232.	3.3	7
124	Electronic Properties of InGaAs/GaAs Strained Coupled Quantum Dots Modeled by Eight-Bandk Â-pTheory. Japanese Journal of Applied Physics, 2003, 42, 144-149.	1.5	7
125	Dense coding in entangled states. Physical Review A, 2002, 66, .	2.5	66
126	An automated glitch-detection/restoration method of atomic force microscope images. Review of Scientific Instruments, 2002, 73, 3245-3250.	1.3	3

#	Article	IF	CITATIONS
127	Single-Electron Transistors with Sidewall Depletion Gates on a Silicon-On-Insulator Nano-Wire. Japanese Journal of Applied Physics, 2002, 41, 2574-2577.	1.5	4
128	Silicon single-electron transistors with sidewall depletion gates and their application to dynamic single-electron transistor logic. IEEE Transactions on Electron Devices, 2002, 49, 627-635.	3.0	41
129	Double-dot-like charge transport through a small size silicon single electron transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 946-949.	2.7	11
130	Direct observation of excited states in double quantum dot silicon single electron transistor. Microelectronic Engineering, 2002, 63, 129-133.	2.4	2
131	Selective growth of InAs self-assembled quantum dots on nanopatterned SiO2/Si substrate. Applied Physics Letters, 2001, 78, 1403-1405.	3.3	21
132	Spontaneous Polarization and Piezoelectric Effects on Inter-Subband Scattering Rate in Wurtzite GaN/AlGaN Quantum-Well. Japanese Journal of Applied Physics, 2001, 40, L941-L944.	1.5	10
133	Single-electron transistor based on a silicon-on-insulator quantum wire fabricated by a side-wall patterning method. Applied Physics Letters, 2001, 79, 3812-3814.	3.3	28
134	Fabrication of quantum dot transistors incorporating a single self-assembled quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 430-434.	2.7	8
135	Spontaneous polarization and piezoelectric effects on intraband relaxation time in a wurtzite GaN/AlGaN quantum well. Applied Physics A: Materials Science and Processing, 2000, 71, 589-592.	2.3	4
136	Screening Effects on Electron-Longitudinal Optical-Phonon Intersubband Scattering in Wide Quantum Well and Comparison with Experiment. Japanese Journal of Applied Physics, 2000, 39, 6601-6605.	1.5	9
137	Application of atomic-force-microscope direct patterning to selective positioning of InAs quantum dots on GaAs. Applied Physics Letters, 2000, 77, 2607-2609.	3.3	48
138	Intraband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment. Semiconductor Science and Technology, 2000, 15, 203-208.	2.0	118
139	Nano-Structure Fabrication and Manipulation by the Cantilever Oscillation of an Atomic Force Microscope. Japanese Journal of Applied Physics, 1999, 38, 7257-7259.	1.5	11
140	Piezoelectric effects on many-body optical gain of zinc-blende and wurtzite GaN/AlGaN quantum-well lasers. Applied Physics Letters, 1999, 75, 1354-1356.	3.3	24
141	Fabrication and electrical characterization of planar resonant tunneling devices incorporating InAs self-assembled quantum dots. Applied Physics Letters, 1999, 75, 1167-1169.	3 . 3	21
142	Intraband Relaxation Time in Wurtzite GaN/InAlN Quantum-Well. Japanese Journal of Applied Physics, 1999, 38, L815-L818.	1.5	6
143	Macromodeling of single-electron transistors for efficient circuit simulation. IEEE Transactions on Electron Devices, 1999, 46, 1667-1671.	3.0	72
144	Non-Markovian gain of strained-layer wurtzite GaN quantum-well lasers with many-body effects. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 520-526.	2.9	4

#	Article	IF	CITATIONS
145	Theory of non-Markovian gain in strained-layer quantum-well lasers with many-body effects. IEEE Journal of Quantum Electronics, 1998, 34, 344-352.	1.9	28
146	Many-body effects on optical gain in strained hexagonal and cubic GaN/AlGaN quantum well lasers. Applied Physics Letters, 1997, 71, 398-400.	3.3	25
147	Theory of non-Markovian optical gain in quantum-well lasers. Progress in Quantum Electronics, 1997, 21, 249-287.	7.0	131
148	Optical gain of strained hexagonal and cubic GaN quantumâ€well lasers. Applied Physics Letters, 1996, 69, 3303-3305.	3.3	15
149	Band-structure engineering of a cubic GaN quantum-well laser. IEEE Photonics Technology Letters, 1996, 8, 194-196.	2.5	9
150	Optical gain of a quantum-well laser with non-Markovian relaxation and many-body effects. IEEE Journal of Quantum Electronics, 1996, 32, 960-965.	1.9	38
151	Nonâ€Markovian gain of a quantumâ€well laser with manyâ€body effects. Applied Physics Letters, 1996, 69, 2498-2500.	3.3	9
152	Screening effects on the bandâ€gap renormalization of strained InGaAs/InGaAsP quantum well lasers lattice matched to GaAs. Applied Physics Letters, 1996, 68, 1844-1846.	3.3	9
153	Optical gain of InGaP and cubic GaN quantumâ€well lasers with very strong spin–orbit coupling. Journal of Applied Physics, 1996, 79, 7731-7737.	2.5	16
154	Optical Gain Calculation for Strained Quantum Well Lasers by the Fourier Expansion Method. Japanese Journal of Applied Physics, 1996, 35, 5740-5744.	1.5	0
155	Calculations of hole–phonon scattering in strainedâ€layer quantum wells. Journal of Applied Physics, 1995, 78, 4505-4509.	2.5	3
156	Time-convolutionless reduced-density-operator theory of an arbitrary driven system coupled to a stochastic reservoir. II. Optical gain and line-shape function of a driven semiconductor. Physical Review B, 1995, 51, 2159-2166.	3.2	29
157	Theoretical study of strained InGaP quantumâ€well lasers. Applied Physics Letters, 1995, 66, 628-630.	3.3	5
158	Theory of optical gain in strainedâ€layer quantum wells within the 6×6 Luttinger–Kohn model. Journal of Applied Physics, 1995, 78, 2489-2497.	2.5	46
159	The theory of non-Markovian gain in semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1, 301-307.	2.9	22
160	Bandâ€gap renormalization effects on 980 nm strainedâ€layer InGaAs/AlGaAs quantumâ€well lasers. Journal of Applied Physics, 1994, 76, 7648-7650.	2.5	4
161	Qualitative estimation of optical gain in wideâ€bandâ€gap semiconductor quantum wells. Journal of Applied Physics, 1994, 76, 8206-8208.	2.5	17
162	First-order correction to phonon scattering due to dynamical screening in quantum wells. Physical Review B, 1994, 50, 1713-1716.	3.2	4

#	Article	IF	CITATIONS
163	Time-convolutionless reduced-density-operator theory of an arbitrary driven system coupled to a stochastic reservoir: Quantum kinetic equations for semiconductors. Physical Review B, 1994, 50, 8310-8318.	3.2	42
164	The theory of strained-layer quantum-well lasers with bandgap renormalization. IEEE Journal of Quantum Electronics, 1994, 30, 350-365.	1.9	54
165	Theoretical aspects of blue-green II–VI strained quantum well lasers. Physica B: Condensed Matter, 1993, 191, 140-155.	2.7	6
166	Envelope function calculations of linear and nonlinear optical gains in a strained-layer quantum-well laser. IEEE Journal of Quantum Electronics, 1993, 29, 2864-2872.	1.9	7
167	Graded InGaAs/GaAs strainedâ€layer single quantum well laser. Applied Physics Letters, 1993, 62, 2239-2241.	3.3	0
168	Intersubband transitions in a \hat{l} -doped semiconductor with an applied electric field: Exact solutions. Physical Review B, 1993, 48, 7981-7985.	3.2	18
169	Strained II-VI Quantum Well for a Room-Temperature Blue-Green Laser. Japanese Journal of Applied Physics, 1992, 31, L556-L559.	1.5	8
170	Gain Switching in Coupled Quantum Wells. Japanese Journal of Applied Physics, 1992, 31, 1055-1058.	1.5	2
171	Theory of phononâ€limited mobility in a deltaâ€doped quantum well. Applied Physics Letters, 1992, 61, 1567-1569.	3.3	2
172	Theoretical analysis of strainedâ€layer InGaAs/GaAs quantumâ€well lasers with gain suppression and valenceâ€band mixing. Applied Physics Letters, 1992, 60, 548-550.	3.3	9
173	Theory of polarâ€opticalâ€phonon scattering in a semiconductor quantum wire. Journal of Applied Physics, 1991, 69, 3596-3600.	2.5	18
174	Optical gain control model of the quantumâ€well laser diode. Journal of Applied Physics, 1991, 70, 5246-5253.	2.5	1
175	Optical gain and gain suppression of quantum-well lasers with valence band mixing. IEEE Journal of Quantum Electronics, 1990, 26, 13-24.	1.9	103
176	Collision broadening of optical gain in semiconductor lasers. Journal of Applied Physics, 1989, 65, 4517-4520.	2.5	5
177	Optical transitions in a parabolic quantum well with an applied electric field—analytical solutions. Journal of Applied Physics, 1989, 65, 2822-2826.	2.5	87
178	Enhancement of the Stark effect in coupled quantum wells for optical switching devices. IEEE Journal of Quantum Electronics, 1989, 25, 2260-2265.	1.9	24
179	Electric-field dependence of the intersubband optical absorption in a semiconductor quantum well. Superlattices and Microstructures, 1988, 4, 153-157.	3.1	8
180	Valenceâ€band mixing effects on the gain and the refractive index change of quantumâ€well lasers. Journal of Applied Physics, 1988, 64, 4056-4064.	2.5	97

#	Article	IF	CITATIONS
181	Optical gain in a strained-layer quantum-well laser. IEEE Journal of Quantum Electronics, 1988, 24, 2400-2406.	1.9	146
182	A fieldâ€effect quantumâ€well laser with lateral current injection. Journal of Applied Physics, 1988, 64, 440-442.	2.5	18
183	Model of the fieldâ€effect quantumâ€well laser with freeâ€carrier screening and valence band mixing. Journal of Applied Physics, 1988, 64, 6143-6149.	2.5	35
184	Electric field dependence of intrasubband polar-optical-phonon scattering in a quantum well. Physical Review B, 1988, 37, 2529-2535.	3.2	16
185	Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 1987, 23, 2196-2204.	1.9	397
186	Intersubband optical absorption in a quantum well with an applied electric field. Physical Review B, 1987, 35, 4149-4151.	3.2	169
187	Variational calculations of subbands in a quantum well with uniform electric field: Gram–Schmidt orthogonalization approach. Applied Physics Letters, 1986, 49, 1450-1452.	3.3	39
188	Langevin noise sources for the Boltzmann transport equations with the relaxationâ€time approximation in nondegenerate semiconductors. Journal of Applied Physics, 1985, 58, 2262-2265.	2.5	13