
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632713/publications.pdf Version: 2024-02-01

Хиномс Ци

#	Article	IF	CITATIONS
1	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012, 12, 1690-1696.	9.1	1,226
2	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	30.8	1,156
3	Flexible Energyâ€Storage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	21.0	1,153
4	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	14.6	961
5	Hâ€TiO ₂ @MnO ₂ //Hâ€TiO ₂ @C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials, 2013, 25, 267-272.	21.0	894
6	Oxygenâ€Deficient Hematite Nanorods as Highâ€Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials, 2014, 26, 3148-3155.	21.0	838
7	Au Nanostructure-Decorated TiO ₂ Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Letters, 2013, 13, 3817-3823.	9.1	812
8	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€Ion Batteries. Advanced Materials, 2019, 31, e1903675.	21.0	780
9	High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters, 2013, 13, 2628-2633.	9.1	691
10	Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 2014, 14, 2522-2527.	9.1	688
11	Solid‣tate Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Advanced Materials, 2014, 26, 2676-2682.	21.0	660
12	WO _{3–x} @Au@MnO ₂ Core–Shell Nanowires on Carbon Fabric for Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944.	21.0	641
13	Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters, 2012, 12, 5376-5381.	9.1	627
14	Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasiâ€Solidâ€State Zn–MnO ₂ Battery. Advanced Materials, 2017, 29, 1700274.	21.0	572
15	Oxygenâ€Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a Highâ€Energy Cathode for Advanced Znâ€ion Batteries. Advanced Materials, 2018, 30, e1802396.	21.0	495
16	Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy and Environmental Science, 2011, 4, 2915.	30.8	479
17	Nitrogenâ€Doped Co ₃ O ₄ Mesoporous Nanowire Arrays as an Additiveâ€Free Air athode for Flexible Solid‧tate Zinc–Air Batteries. Advanced Materials, 2017, 29, 1602868.	21.0	428
18	Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 2013, 3, 1021.	3.3	427

#	Article	IF	CITATIONS
19	Advanced Tiâ€Ðoped Fe ₂ O ₃ @PEDOT Core/Shell Anode for Highâ€Energy Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1402176.	19.5	416
20	Flexible Znâ€lon Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	10.0	412
21	Directional Construction of Vertical Nitrogenâ€Doped 1Tâ€2H MoSe ₂ /Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1700748.	21.0	404
22	Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015, 3, 1364-1387.	10.3	396
23	A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth. Advanced Materials, 2015, 27, 3572-3578.	21.0	384
24	Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy, 2014, 8, 255-263.	16.0	381
25	Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & Interfaces, 2014, 6, 22920-22927.	8.0	370
26	Ironâ€Based Supercapacitor Electrodes: Advances and Challenges. Advanced Energy Materials, 2016, 6, 1601053.	19.5	358
27	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Advanced Materials, 2019, 31, e1900341.	21.0	320
28	An Ultrastable and Highâ€Performance Flexible Fiberâ€Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode. Advanced Materials, 2017, 29, 1702698.	21.0	314
29	LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors. ACS Nano, 2012, 6, 10296-10302.	14.6	310
30	A New Benchmark Capacitance for Supercapacitor Anodes by Mixedâ€Valence Sulfurâ€Doped V ₆ O _{13â^'<i>x</i>} . Advanced Materials, 2014, 26, 5869-5875.	21.0	305
31	Boosting Znâ€lon Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption. Advanced Materials, 2019, 31, e1904948.	21.0	304
32	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, 5454-5459.	13.8	292
33	Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Materials, 2014, 6, e129-e129.	7.9	284
34	Hierarchical Porous Ni ₃ S ₄ with Enriched Highâ€Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1900315.	14.9	281
35	High-performance flexible quasi-solid-state Zn–MnO ₂ battery based on MnO ₂ nanorod arrays coated 3D porous nitrogen-doped carbon cloth. Journal of Materials Chemistry A, 2017, 5, 14838-14846.	10.3	273
36	High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale, 2013, 5, 10283.	5.6	265

#	Article	IF	CITATIONS
37	Metal–Organicâ€Frameworkâ€Derived Dual Metal―and Nitrogenâ€Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells. Advanced Science, 2016, 3, 1500265.	11.2	262
38	3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 2013, 5, 6790.	5.6	258
39	Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical Communications, 2012, 48, 7717-7719.	4.1	253
40	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale, 2013, 5, 7984.	5.6	253
41	Crâ€Doped FeNi–P Nanoparticles Encapsulated into Nâ€Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Materials, 2019, 31, e1900178.	21.0	246
42	Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. Journal of Power Sources, 2017, 351, 130-137.	7.8	244
43	Phase Modulation of (1Tâ€2H)â€MoSe2/TiC Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802223.	21.0	244
44	A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society, 2020, 142, 19570-19578.	13.7	232
45	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€6haped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6762-6766.	13.8	230
46	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale, 2012, 4, 3123.	5.6	228
47	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. Journal of Physical Chemistry C, 2013, 117, 10957-10964.	3.1	222
48	Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Materials, 2019, 21, 154-161.	18.0	221
49	Flexible Ultrafast Aqueous Rechargeable Ni//Bi Battery Based on Highly Durable Singleâ€Crystalline Bismuth Nanostructured Anode. Advanced Materials, 2016, 28, 9188-9195.	21.0	220
50	Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell. Advanced Energy Materials, 2014, 4, 1300994.	19.5	217
51	Photoelectrochemical hydrogen production from biomass derivatives and water. Chemical Society Reviews, 2014, 43, 7581-7593.	38.1	216
52	New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, 3639-3649.	3.3	211
53	Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. Journal of Materials Chemistry, 2012, 22, 13357.	6.7	207
54	Valenceâ€Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Superâ€Long Cyclic Durability of 100 000 Cycles. Advanced Functional Materials, 2015, 25, 3534-3540.	14.9	200

#	Article	IF	CITATIONS
55	Zeolitic Imidazolate Frameworks as Zn ²⁺ Modulation Layers to Enable Dendriteâ€Free Zn Anodes. Advanced Science, 2020, 7, 2002173.	11.2	199
56	TiO ₂ @C core–shell nanowires for high-performance and flexible solid-state supercapacitors. Journal of Materials Chemistry C, 2013, 1, 225-229.	5.5	192
57	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	21.0	191
58	Hollow TiO ₂ @Co ₉ S ₈ Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production. Advanced Science, 2018, 5, 1700772.	11.2	189
59	Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11, 348-355.	16.0	180
60	Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21, 4266-4289.	9.0	180
61	Î ³ -MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. Journal of Energy Chemistry, 2020, 43, 182-187.	12.9	180
62	Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials, 2015, 27, 3085-3091.	21.0	177
63	Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale, 2014, 6, 7142.	5.6	173
64	Defect Promoted Capacity and Durability of Nâ€MnO _{2–} <i>_x</i> Branch Arrays via Lowâ€Temperature NH ₃ Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 2019, 15, e1905452.	10.0	171
65	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129.	5.6	169
66	Quantitative Detection of Photothermal and Photoelectrocatalytic Effects Induced by SPR from Au@Pt Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 11462-11466.	13.8	169
67	Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochimica Acta, 2012, 62, 1-7.	5.2	168
68	Engineering Thin MoS ₂ Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017, 2, 1862-1868.	17.4	167
69	Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors. Advanced Functional Materials, 2019, 29, 1806329.	14.9	167
70	Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy and Environmental Science, 2020, 13, 2515-2523.	30.8	166
71	Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh apacity Cathode for Rechargeable Zinc Ion Battery. Advanced Science, 2019, 6, 1900151.	11.2	165
72	Solar driven hydrogen releasing from urea and human urine. Energy and Environmental Science, 2012, 5, 8215.	30.8	160

#	Article	IF	CITATIONS
73	Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chemical Communications, 2011, 47, 5804.	4.1	158
74	Chemically modified nanostructures for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 35-51.	11.6	156
75	Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Applied Materials & Interfaces, 2015, 7, 4048-4055.	8.0	156
76	Building Threeâ€Dimensional Graphene Frameworks for Energy Storage and Catalysis. Advanced Functional Materials, 2015, 25, 324-330.	14.9	156
77	Amorphous Cobalt Hydroxide with Superior Pseudocapacitive Performance. ACS Applied Materials & Interfaces, 2014, 6, 745-749.	8.0	155
78	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	10.3	154
79	Water Surface Assisted Synthesis of Largeâ€Scale Carbon Nanotube Film for Highâ€Performance and Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4724-4729.	21.0	148
80	Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Applied Catalysis B: Environmental, 2017, 202, 550-556.	20.2	148
81	Recent Smart Methods for Achieving Highâ€Energy Asymmetric Supercapacitors. Small Methods, 2018, 2, 1700230.	8.6	147
82	A Confinement Strategy for Stabilizing ZIFâ€Derived Bifunctional Catalysts as a Benchmark Cathode of Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, e1805268.	21.0	147
83	Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10825-10829.	10.3	145
84	Recent progress and challenges of carbon materials for Znâ€ion hybrid supercapacitors. , 2020, 2, 521-539.		144
85	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1905267.	14.9	140
86	In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward Highâ€Energy and Stable Nickel–Bismuth Batteries. Advanced Materials, 2018, 30, e1707290.	21.0	139
87	Three dimensional architectures: design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 15792-15823.	10.3	135
88	Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges. Small Methods, 2020, 4, 1900823.	8.6	129
89	Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 372-378.	10.3	123
90	Nickel@Nickel Oxide Core–Shell Electrode with Significantly Boosted Reactivity for Ultrahighâ€Energy and Stable Aqueous Ni–Zn Battery. Advanced Functional Materials, 2018, 28, 1802157.	14.9	123

#	Article	IF	CITATIONS
91	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. Journal of Power Sources, 2013, 239, 64-71.	7.8	121
92	Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. Journal of Materials Chemistry, 2011, 21, 5569.	6.7	120
93	An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters, 2015, 15, 3189-3194.	9.1	118
94	Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochimica Acta, 2019, 327, 134999.	5.2	116
95	Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La ³⁺ intercalation. Journal of Materials Chemistry A, 2019, 7, 22079-22083.	10.3	116
96	Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors. Nanoscale, 2013, 5, 10806.	5.6	115
97	Vanadium Nitride Nanowire Supported SnS ₂ Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23205-23215.	8.0	115
98	Nitrogen and Phosphorus Codoped Vertical Graphene/Carbon Cloth as a Binderâ€Free Anode for Flexible Advanced Potassium Ion Full Batteries. Small, 2019, 15, e1901285.	10.0	115
99	Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. Journal of Power Sources, 2014, 272, 946-953.	7.8	114
100	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 2849-2855.	10.3	114
101	The roles of defect states in photoelectric and photocatalytic processes for Zn _x Cd _{1â[~]x} S. Energy and Environmental Science, 2011, 4, 466-470.	30.8	112
102	Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications. Chemical Communications, 2010, 46, 7721.	4.1	111
103	Improving the photoelectrochemical and photocatalytic performance of CdO nanorods with CdS decoration. CrystEngComm, 2013, 15, 4212.	2.6	110
104	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Đoor for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	14.9	110
105	An ultra-dense NiS ₂ /reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel–zinc batteries. Journal of Materials Chemistry A, 2019, 7, 15654-15661.	10.3	108
106	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	13.8	108
107	Facile Electrochemical Synthesis of Single Crystalline CeO ₂ Octahedrons and Their Optical Properties. Langmuir, 2010, 26, 7569-7573.	3.5	107
108	An ultrathin defect-rich Co ₃ O ₄ nanosheet cathode for high-energy and durable aqueous zinc ion batteries. Journal of Materials Chemistry A, 2019, 7, 21678-21683.	10.3	106

#	Article	IF	CITATIONS
109	Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Materials, 2018, 12, 137-144.	18.0	103
110	Sulphur-doped Co ₃ O ₄ nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10779-10785.	10.3	101
111	Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy and Environment, 2018, 3, 56-62.	8.7	100
112	Interlayer gap widened $\hat{l}\pm$ -phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	12.8	100
113	3D CNTs Networks Enable MnO ₂ Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn–MnO ₂ Batteries. Small Methods, 2019, 3, 1900525.	8.6	99
114	Printing Porous Carbon Aerogels for Low Temperature Supercapacitors. Nano Letters, 2021, 21, 3731-3737.	9.1	98
115	Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5828-5833.	10.3	95
116	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	5.2	92
117	Interlayer Engineering of Preintercalated Layered Oxides as Cathode for Emerging Multivalent Metal-ion Batteries: Zinc and Beyond. Energy Storage Materials, 2021, 38, 397-437.	18.0	90
118	A COFâ€Like Nâ€Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for Highâ€Energy Aqueous Zinc Dualâ€Ion Batteries. Advanced Materials, 2021, 33, e2101857.	21.0	90
119	Facile and Efficient Electrochemical Synthesis of PbTe Dendritic Structures. Chemistry of Materials, 2008, 20, 3306-3314.	6.7	89
120	Binder-free WS ₂ nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 21460-21466.	10.3	89
121	Tunable Wavelength Enhanced Photoelectrochemical Cells from Surface Plasmon Resonance. Journal of the American Chemical Society, 2016, 138, 16204-16207.	13.7	87
122	Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment. Journal of Materials Chemistry, 2010, 20, 7118.	6.7	86
123	Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, 7312-7329.	3.3	86
124	Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. Journal of Materials Chemistry, 2012, 22, 14272.	6.7	85
125	Controllable Synthesis of Zn _{<i>x</i>} Cd _{1–<i>x</i>} S@ZnO Core–Shell Nanorods with Enhanced Photocatalytic Activity. Langmuir, 2012, 28, 10558-10564.	3.5	83
126	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	6.3	83

#	Article	IF	CITATIONS
127	Controllable Electrochemical Synthesis of Ce ⁴⁺ -Doped ZnO Nanostructures from Nanotubes to Nanorods and Nanocages. Crystal Growth and Design, 2008, 8, 1276-1281.	3.0	82
128	MnO ₂ nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124.	8.0	82
129	Ni ₃ S ₂ @PANI core–shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel–zinc batteries. Journal of Materials Chemistry A, 2019, 7, 10629-10635.	10.3	81
130	Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 2020, 8, 17938-17950.	10.3	81
131	Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zincâ€lon Batteries: Recent Progress and Future Perspectives. Advanced Sustainable Systems, 2020, 4, 2000082.	5.3	81
132	Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Advances, 2011, 1, 1207.	3.6	80
133	Controllable Electrochemical Synthesis of Hierarchical ZnO Nanostructures on FTO Glass. Journal of Physical Chemistry C, 2009, 113, 13574-13582.	3.1	79
134	Fe ₃ O ₄ /reduced graphene oxide with enhanced electrochemical performance towards lithium storage. Journal of Materials Chemistry A, 2014, 2, 7214-7220.	10.3	79
135	Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors. Energy Storage Materials, 2019, 22, 410-417.	18.0	78
136	Co(II) _{1–<i>x</i>} Co(0) _{<i>x</i>/3} Mn(III) _{2<i>x</i>/3} S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13348-13359.	8.0	77
137	Chemically Lithiated TiO ₂ Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25991-26003.	8.0	76
138	Interfacial Engineering Coupled Valence Tuning of MoO ₃ Cathode for Highâ€Capacity and Highâ€Rate Fiberâ€Shaped Zincâ€Ion Batteries. Small, 2020, 16, e1907458.	10.0	76
139	Mixedâ€Valence Copper Selenide as an Anode for Ultralong Lifespan Rockingâ€Chair Znâ€Ion Batteries: An Insight into its Intercalation/Extraction Kinetics and Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2005092.	14.9	76
140	Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm, 2012, 14, 1850.	2.6	75
141	Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochimica Acta, 2018, 259, 338-347.	5.2	75
142	Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chemical Engineering Journal, 2018, 352, 996-1003.	12.7	74
143	Heterostructured ZnO/SnO _{2â^x} nanoparticles for efficient photocatalytic hydrogen production. Chemical Communications, 2014, 50, 4341-4343.	4.1	73
144	Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays. Green Chemistry, 2013, 15, 2434.	9.0	72

#	Article	IF	CITATIONS
145	NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity. International Journal of Hydrogen Energy, 2014, 39, 4820-4827.	7.1	72
146	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie, 2016, 128, 6874-6878.	2.0	70
147	Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy, 2020, 67, 104212.	16.0	70
148	A high-energy-density aqueous zinc–manganese battery with a La–Ca co-doped ε-MnO ₂ cathode. Journal of Materials Chemistry A, 2020, 8, 11642-11648.	10.3	69
149	Electrochemical Self-Assembly of ZnO Nanoporous Structures. Journal of Physical Chemistry C, 2007, 111, 1919-1923.	3.1	68
150	Efficiently texturing hierarchical epoxy layer for smart superhydrophobic surfaces with excellent durability and exceptional stability exposed to fire. Chemical Engineering Journal, 2018, 348, 212-223.	12.7	68
151	Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery. Journal of Power Sources, 2019, 433, 126684.	7.8	67
152	Boosting the Oxygen Evolution Reaction Activity of NiFe ₂ O ₄ Nanosheets by Phosphate Ion Functionalization. ACS Omega, 2019, 4, 3493-3499.	3.5	66
153	Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nature Communications, 2022, 13, 547.	12.8	66
154	Electrochemical Growth and Control of ZnO Dendritic Structures. Journal of Physical Chemistry C, 2007, 111, 6678-6683.	3.1	65
155	Niâ€based Nanostructures as Highâ€performance Cathodes for Rechargeable Niâ^'Zn Battery. ChemNanoMat, 2018, 4, 525-536.	2.8	65
156	Construction of N-doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 279, 119367.	20.2	65
157	Facile electrochemical synthesis of CeO ₂ hierarchical nanorods and nanowires with excellent photocatalytic activities. New Journal of Chemistry, 2014, 38, 2581-2586.	2.8	64
158	Surface engineering of carbon fiber paper for efficient capacitive energy storage. Journal of Materials Chemistry A, 2016, 4, 18639-18645.	10.3	63
159	Facile Synthesis of Hierarchical ZnO:Tb ³⁺ Nanorod Bundles and Their Optical and Magnetic Properties. Journal of Physical Chemistry C, 2008, 112, 2927-2933.	3.1	62
160	Room-temperature ferromagnetism in hierarchically branched MoO ₃ nanostructures. CrystEngComm, 2012, 14, 1419-1424.	2.6	62
161	Hierarchical CeO2 nanospheres as highly-efficient adsorbents for dye removal. New Journal of Chemistry, 2013, 37, 585.	2.8	62
162	A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Research, 2019, 12, 1061-1069.	10.4	62

#	Article	IF	CITATIONS
163	CdS/CeOx heterostructured nanowires for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 4190.	10.3	61
164	Facile synthesis of large-area CeO 2 /ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution. Journal of Power Sources, 2014, 247, 545-550.	7.8	60
165	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, 5546-5551.	2.0	60
166	Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Materials Research Bulletin, 2021, 135, 111134.	5.2	60
167	Vertically aligned In2O3 nanorods on FTO substrates for photoelectrochemical applications. Journal of Materials Chemistry, 2011, 21, 14685.	6.7	59
168	Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chemical Engineering Journal, 2020, 379, 122325.	12.7	59
169	NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chemical Engineering Journal, 2020, 400, 125832.	12.7	58
170	Oxygen-rich interface enables reversible stibium stripping/plating chemistry in aqueous alkaline batteries. Nature Communications, 2021, 12, 14.	12.8	58
171	Zincophilic Cu Sites Induce Dendriteâ€Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	14.9	57
172	Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 135-143.	9.4	56
173	Highâ€Voltage Rechargeable Aqueous Zincâ€Based Batteries: Latest Progress and Future Perspectives. Small Science, 2021, 1, 2000066.	9.9	56
174	Surface defect-abundant one-dimensional graphitic carbon nitride nanorods boost photocatalytic nitrogen fixation. New Journal of Chemistry, 2020, 44, 20651-20658.	2.8	55
175	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55
176	Recent Advances toward Achieving Highâ€Performance Carbonâ€Fiber Materials for Supercapacitors. ChemElectroChem, 2018, 5, 571-582.	3.4	54
177	Threeâ€Phase Boundary in Crossâ€Coupled Microâ€Mesoporous Networks Enabling 3Dâ€Printed and Ionogelâ€Based Quasiâ€Solidâ€State Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2002474.	21.0	54
178	Pyrrolic-Dominated Nitrogen Redox Enhances Reaction Kinetics of Pitch-Derived Carbon Materials in Aqueous Zinc Ion Hybrid Supercapacitors. , 2021, 3, 1291-1299.		54
179	Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni–Zn batteries. Journal of Materials Chemistry A, 2020, 8, 565-572.	10.3	53
180	Facile synthesis of bismuth oxide/bismuth vanadate heterostructures for efficient photoelectrochemical cells. RSC Advances, 2015, 5, 34152-34156.	3.6	51

#	Article	IF	CITATIONS
181	Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical Science, 2015, 6, 6799-6805.	7.4	51
182	Efficient Photoelectrochemical Water Oxidation over Hydrogenâ€Reduced Nanoporous BiVO ₄ with Ni–B _i Electrocatalyst. ChemElectroChem, 2015, 2, 1385-1395.	3.4	50
183	Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors. Nano Energy, 2019, 65, 103987.	16.0	50
184	Porous Pr(OH) ₃ Nanostructures as High-Efficiency Adsorbents for Dye Removal. Langmuir, 2012, 28, 11078-11085.	3.5	49
185	Chitosan Wasteâ€Derived Co and N Coâ€doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1806-1812.	3.4	49
186	Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries. Chemical Science, 2019, 10, 3602-3607.	7.4	49
187	Electrochemical synthesis of orientation-ordered ZnO nanorod bundles. Electrochemistry Communications, 2007, 9, 863-868.	4.7	48
188	Facile synthesis of Pd–Mn ₃ O ₄ /C as high-efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 18236-18240.	10.3	48
189	Phase controllable synthesis of three-dimensional star-like MnO ₂ hierarchical architectures as highly efficient and stable oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 16462-16468.	10.3	48
190	Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction. Scientific Reports, 2017, 7, 41542.	3.3	48
191	Porous MoO ₂ nanowires as stable and high-rate negative electrodes for electrochemical capacitors. Chemical Communications, 2017, 53, 3929-3932.	4.1	48
192	CoP Nanoparticle Confined in P, N Coâ€Doped Porous Carbon Anchored on Pâ€Doped Carbonized Wood Fibers with Tailored Electronic Structure for Efficient Urea Electroâ€Oxidation. Small, 2022, 18, e2200950.	10.0	48
193	Electrochemically Activated Nickel–Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel–Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14854-14861.	8.0	47
194	Binder-free CaV3O7 nanobelts with rich oxygen defects as high energy cathode for aqueous Zn-ion battery. Journal of Power Sources, 2020, 472, 228507.	7.8	47
195	Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anodes for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 6342-6349.	10.3	45
196	Facile activation of commercial Ni foil as robust cathode for advanced rechargeable Ni-Zn battery. Electrochimica Acta, 2018, 263, 311-317.	5.2	45
197	Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. Journal of Materials Chemistry A, 2018, 6, 12250-12258.	10.3	45
198	Bioinspired interfacial engineering of a CoSe ₂ decorated carbon framework cathode towards temperature-tolerant and flexible Zn–air batteries. Nanoscale, 2021, 13, 3019-3026.	5.6	45

#	Article	IF	CITATIONS
199	Manganese oxides supported on hydrogenated TiO ₂ nanowire array catalysts for the electrochemical oxygen evolution reaction in water electrolysis. Journal of Materials Chemistry A, 2015, 3, 21308-21313.	10.3	44
200	Use of Additives in the Electrodeposition of Nanostructured Eu ³⁺ /ZnO Films for Photoluminescent Devices. Langmuir, 2009, 25, 2378-2384.	3.5	43
201	High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. Journal of Hazardous Materials, 2022, 430, 128195.	12.4	43
202	Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy, 2014, 10, 313-321.	16.0	42
203	Tailoring Bandgap of Perovskite BaTiO3 by Transition Metals Co-Doping for Visible-Light Photoelectrical Applications: A First-Principles Study. Nanomaterials, 2018, 8, 455.	4.1	42
204	Fe ₃ O ₄ nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17378-17388.	10.3	42
205	Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-Air batteries. Energy Storage Materials, 2020, 30, 138-145.	18.0	42
206	Hydrothermal growth of Sn4+-doped FeS2 cubes on FTO substrates and its photoelectrochemical properties. Electrochimica Acta, 2011, 56, 6932-6939.	5.2	41
207	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	10.3	41
208	Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence. TrAC - Trends in Analytical Chemistry, 2015, 66, 103-117.	11.4	41
209	Boosting oxygen evolution activity of NiFe layered double hydroxide through interface engineering assisted with naturally-hierarchical wood. Chemical Engineering Journal, 2021, 421, 129751.	12.7	41
210	Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chemical Science, 2019, 10, 7600-7609.	7.4	40
211	Amorphous cobalt hydrogen phosphate nanosheets with remarkable electrochemical performances as advanced electrode for supercapacitors. Journal of Power Sources, 2020, 449, 227487.	7.8	40
212	Cobaltâ€Based Electrocatalysts as Air Cathodes in Rechargeable Zn–Air Batteries: Advances and Challenges. Small Structures, 2021, 2, 2100144.	12.0	40
213	Nitrogen-doped MnO ₂ nanorods as cathodes for high-energy Zn-MnO ₂ batteries. Functional Materials Letters, 2018, 11, 1840006.	1.2	39
214	Ultrathinâ€FeOOHâ€Coated MnO ₂ Sonosensitizers with Boosted Reactive Oxygen Species Yield and Remodeled Tumor Microenvironment for Efficient Cancer Therapy. Advanced Science, 2022, 9, e2200005.	11.2	39
215	Three-dimensional Fe3O4 Nanotube Array on Carbon Cloth Prepared from A Facile Route for Lithium ion Batteries. Electrochimica Acta, 2016, 193, 32-38.	5.2	38
216	Atomic Modulation Triggering Improved Performance of MoO ₃ Nanobelts for Fiber‧haped Supercapacitors. Small, 2020, 16, e1905778.	10.0	38

#	Article	IF	CITATIONS
217	Coercive Fields Above 6â€T in Two Cobalt(II)–Radical Chain Compounds. Angewandte Chemie - International Edition, 2020, 59, 10610-10618.	13.8	38
218	Facile synthesis of porous 3D CoNiCu nano-network structure and their activity towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2012, 37, 18688-18693.	7.1	37
219	Enhancing Znâ€lon Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La ³⁺ . ChemSusChem, 2020, 13, 1568-1574.	6.8	37
220	A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113727.	3.8	37
221	Photochemical decomposition of perfluorochemicals in contaminated water. Water Research, 2020, 186, 116311.	11.3	37
222	Highly conductive ethylene–vinyl acetate copolymer/carbon nanotube paper for lightweight and flexible supercapacitors. Journal of Power Sources, 2014, 248, 1248-1255.	7.8	36
223	Linker Defects Triggering Boosted Oxygen Reduction Activity of Co/Znâ€ZIF Nanosheet Arrays for Rechargeable Zn–Air batteries. Small, 2021, 17, e2007085.	10.0	36
224	Vertical bismuth oxide nanosheets with enhanced crystallinity: promising stable anodes for rechargeable alkaline batteries. Journal of Materials Chemistry A, 2017, 5, 25539-25544.	10.3	35
225	Facile electrochemical synthesis of tellurium nanorods and their photoconductive properties. Crystal Research and Technology, 2012, 47, 1069-1074.	1.3	33
226	Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors. RSC Advances, 2014, 4, 51878-51883.	3.6	33
227	Facile synthesis of tungsten oxide nanostructures for efficient photoelectrochemical water oxidation. Journal of Power Sources, 2014, 269, 98-103.	7.8	33
228	A highly crystalline bismuth superstructure for ultrastable and high-performance flexible aqueous nickel–bismuth batteries. Journal of Materials Chemistry A, 2018, 6, 8895-8900.	10.3	33
229	Defect modulation of ZnMn2O4 nanotube arrays as high-rate and durable cathode for flexible quasi-solid-state zinc ion battery. Chemical Engineering Journal, 2021, 422, 129890.	12.7	33
230	Three-dimensional TiO ₂ /CeO ₂ nanowire composite for efficient formaldehyde oxidation at low temperature. RSC Advances, 2015, 5, 7729-7733.	3.6	31
231	Three-dimensional carbon nanotube/ethylvinylacetate/polyaniline as a high performance electrode for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1884-1889.	10.3	31
232	Electro-synthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 16476-16483.	10.3	31
233	Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor. Journal of Physical Chemistry C, 2019, 123, 23374-23381.	3.1	31
234	A quinone electrode with reversible phase conversion for long-life rechargeable aqueous aluminum–metal batteries. Chemical Communications, 2021, 57, 6931-6934.	4.1	31

#	Article	IF	CITATIONS
235	One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin. Science of the Total Environment, 2022, 815, 151962.	8.0	31
236	Hierarchically Interconnected N-Doped Carbon Aerogels Derived from Cellulose Nanofibrils as High Performance and Stable Electrodes for Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 23852-23860.	3.1	30
237	Ni (II) Coordination Supramolecular Grids for Aqueous Nickelâ€Zinc Battery Cathodes. Advanced Functional Materials, 2021, 31, 2100443.	14.9	30
238	Nickel Hydroxide Decorated Hydrogenated Zinc Oxide Nanorod Arrays with Enhanced Photoelectrochemical Performance. Electrochimica Acta, 2014, 137, 108-113.	5.2	29
239	Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm. Journal of Rare Earths, 2011, 29, 133-137.	4.8	28
240	Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2012, 37, 13350-13354.	7.1	28
241	Oxygen-deficient tungsten oxide nanorods with high crystallinity: Promising stable anode for asymmetric supercapacitors. Electrochimica Acta, 2018, 283, 639-645.	5.2	28
242	Preparation and Magnetic Properties of Polycrystalline Eu ₂ O ₃ Microwires. Journal of the Electrochemical Society, 2012, 159, D204-D207.	2.9	27
243	Three-dimensional iron oxyhydroxide/reduced graphene oxide composites as advanced electrode for electrochemical energy storage. Carbon, 2016, 103, 56-62.	10.3	27
244	Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis under visible light. Environmental Science: Nano, 2018, 5, 2129-2143.	4.3	27
245	Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs. Materials Research Bulletin, 2012, 47, 580-585.	5.2	26
246	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	3.3	26
247	Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst. Journal of Power Sources, 2015, 297, 9-15.	7.8	25
248	Facile Hydrothermal Synthesis of Three Dimensional Hematite Nanostructures with Enhanced Water Splitting Performance. Electrochimica Acta, 2015, 186, 95-100.	5.2	24
249	Methods for Rational Design of Advanced Znâ€Based Batteries. Small Methods, 2022, 6, .	8.6	24
250	Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation. Journal of Colloid and Interface Science, 2022, 626, 445-452.	9.4	24
251	Controllable Electrochemical Synthesis and Photocatalytic Activity of CeO2 Octahedra and Nanotubes. Journal of the Electrochemical Society, 2011, 158, E41.	2.9	23
252	Surface plasmon resonance promoted photoelectrocatalyst by visible light from Au core Pd shell Pt cluster nanoparticles. Electrochimica Acta, 2016, 209, 591-598.	5.2	22

#	Article	IF	CITATIONS
253	Facile preparation of hydrophilic In ₂ O ₃ nanospheres and rods with improved performances for photocatalytic degradation of PFOA. Environmental Science: Nano, 2021, 8, 1010-1018.	4.3	22
254	Porous 3D Honeycomb Structure Biomass Carbon as a Supercapacitor Electrode Material to Achieve Efficient Energy Storage. Industrial & Engineering Chemistry Research, 2021, 60, 11079-11085.	3.7	22
255	A simple electrochemical deposition route for the controllable growth of Ce4+-doped ZnO nanorods. Electrochimica Acta, 2008, 53, 5180-5185.	5.2	21
256	Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates. Nanoscale, 2013, 5, 1820.	5.6	21
25 7	Surface Engineering for Advanced Aqueous Supercapacitors: A Review. ChemElectroChem, 2020, 7, 586-593.	3.4	20
258	Ni@Ni ₂ P Encapsulation in Interconnected N-Doped Carbonized Cellulose Nanofibril Network for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1859-1867.	6.7	20
259	Ca-ion modified vanadium oxide nanoribbons with enhanced Zn-ion storage capability. Journal of Materials Chemistry A, 2022, 10, 5614-5619.	10.3	19
260	Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm, 2010, 12, 4066.	2.6	18
261	General electrochemical assembling to porous nanowires with high adaptability to water treatment. CrystEngComm, 2011, 13, 2451.	2.6	18
262	Threeâ€Dimensional Nitrogenâ€Doped Graphene Frameworks from Electrochemical Exfoliation of Graphite as Efficient Supercapacitor Electrodes. ChemNanoMat, 2019, 5, 152-157.	2.8	18
263	Carbon nanotubes-based electrode for Zn ion batteries. Materials Research Bulletin, 2021, 138, 111246.	5.2	18
264	Anchoring polyaniline molecule on 3D carbon nanotube meshwork as self-standing cathodes for advanced rechargeable zinc ion batteries. Journal of Power Sources, 2021, 508, 230329.	7.8	18
265	Ten Thousand-Cycle Ultrafast Energy Storage of Wadsley–Roth Phase Fe–Nb Oxides with a Desolvation Promoting Interfacial Layer. Nano Letters, 2021, 21, 9675-9683.	9.1	17
266	Promoting Zn ²⁺ storage capability of a vanadium-based cathode <i>via</i> structural reconstruction for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 26698-26703.	10.3	17
267	High rate and ultralong life flexible all-solid-state zinc ion battery based on electron density modulated NiCo2O4 nanosheets. Journal of Energy Chemistry, 2022, 70, 283-291.	12.9	17
268	Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors. Materials Research Bulletin, 2018, 101, 140-145.	5.2	16
269	Oxygen-deficient TiO2 decorated carbon paper as advanced anodes for microbial fuel cells. Electrochimica Acta, 2021, 366, 137468.	5.2	16
270	Tuning electronic structure endows 1,4-naphthoquinones with significantly boosted Zn-ion storage capability and output voltage. Journal of Power Sources, 2021, 483, 229114.	7.8	16

Хіноng Lu

#	Article	IF	CITATIONS
271	Controllable electrochemical synthesis of La3+/ZnO hierarchical nanostructures and their optical and magnetic properties. Electrochimica Acta, 2010, 55, 3687-3693.	5.2	15
272	3D V ₃ O ₇ ·H ₂ O/Partially Exfoliated Carbon Nanotube Composites with Significantly Improved Lithium Storage Ability. Particle and Particle Systems Characterization, 2016, 33, 531-537.	2.3	15
273	Sludge Incineration Bottom Ash Enhances Anaerobic Digestion of Primary Sludge toward Highly Efficient Sludge Anaerobic Codigestion. ACS Sustainable Chemistry and Engineering, 2020, 8, 3005-3012.	6.7	15
274	Enhanced Photoelectrochemical Activity by Autologous Cd/CdO/CdS Heterojunction Photoanodes with High Conductivity and Separation Efficiency. Chemistry - A European Journal, 2017, 23, 9625-9631.	3.3	14
275	Self-surface-passivation of titanium doped hematite photoanode for efficient solar water and formaldehyde oxidation. Materials Research Bulletin, 2017, 96, 354-359.	5.2	14
276	lsostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors. Journal of Materials Chemistry A, 2018, 6, 18938-18947.	10.3	14
277	Facile Synthesis of Porousâ€Carbon Nanoarchitectures as Advanced and Durable Electrodes for Supercapacitors. Particle and Particle Systems Characterization, 2019, 36, 1900115.	2.3	14
278	Phosphate ion and oxygen defect-modulated nickel cobaltite nanowires: a bifunctional cathode for flexible hybrid supercapacitors and microbial fuel cells. Journal of Materials Chemistry A, 2020, 8, 8722-8730.	10.3	14
279	Construction of chemical self-charging zinc ion batteries based on defect coupled nitrogen modulation of zinc manganite vertical graphene arrays. Materials Advances, 2021, 2, 6694-6702.	5.4	14
280	Recent Advances of Carbon Materials in Anodes for Aqueous Zinc Ion Batteries. Chemical Record, 2022, 22, .	5.8	14
281	Electrochemical assembling of aligned porous Nd(OH)3 nanobelts with high performance in water treatment. Inorganic Chemistry Communication, 2010, 13, 1425-1428.	3.9	13
282	Facile Electrochemical Synthesis of ZnO/ZnS Heterostructure Nanorod Arrays. Journal of the Electrochemical Society, 2011, 158, E84.	2.9	13
283	Porous molybdenum tungsten oxynitrides enable long-life supercapacitors with high capacitance. Journal of Power Sources, 2019, 442, 227247.	7.8	13
284	Porous Lanthanumâ€Doped Manganese Oxide Nanoparticles for Enhanced Sonodynamic Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000143.	2.3	13
285	Intrinsic Carbon Defects Induced Reversible Antimony Chemistry for Highâ€Energy Aqueous Alkaline Batteries. Advanced Materials, 2022, 34, e2200085.	21.0	13
286	Scalable Production of the Cobaltous Hydroxide Nanosheet Electrode for Ultrahigh-Energy and Stable Aqueous Cobalt–Zinc Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 1464-1470.	6.7	12
287	The ultrasonic-assisted growth of porous cobalt/nickel composite hydroxides as a super high-energy and stable cathode for aqueous zinc batteries. Journal of Materials Chemistry A, 2020, 8, 17741-17746.	10.3	12
288	Co ₃ O ₄ @Co Nanoparticles Embedded Porous Nâ€Rich Carbon Matrix for Efficient Oxygen Reduction. Particle and Particle Systems Characterization, 2017, 34, 1700074.	2.3	11

#	Article	IF	CITATIONS
289	Porous TiO2/Co9S8 core-branch nanosheet arrays with high electrocatalytic activity for a hydrogen evolution reaction. Nanotechnology, 2019, 30, 404001.	2.6	11
290	Enhanced catalytic activity of Au core Pd shell Pt cluster trimetallic nanorods for CO ₂ reduction. RSC Advances, 2019, 9, 10168-10173.	3.6	11
291	<i>In situ</i> filling of a robust carbon sponge with hydrogel electrolyte: a type of omni-healable electrode for flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 7746-7755.	10.3	11
292	Activated nitrogen-doped ordered porous carbon as advanced anode for high-performance microbial fuel cells. Electrochimica Acta, 2021, 391, 138920.	5.2	11
293	Fe ³⁺ Promoted the Photocatalytic Defluorination of Perfluorooctanoic Acid (PFOA) over In ₂ O ₃ . ACS ES&T Water, 2021, 1, 2431-2439.	4.6	11
294	Electrochemical Assemble of Single Crystalline Twin ZnO Nanorods. Journal of the Electrochemical Society, 2011, 158, D244.	2.9	10
295	Natural elluloseâ€Nanofibrilâ€Tailored NiFe Nanoparticles for Efficient Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3303-3310.	3.4	10
296	Fiber-junction design for directional bending sensors. Npj Flexible Electronics, 2021, 5, .	10.7	10
297	Bismuthâ€based Nanomaterials for Aqueous Alkaline Batteries: Recent Progress and Perspectives. ChemNanoMat, 2021, 7, 1188-1199.	2.8	10
298	Co ₃ O ₄ Nanowires Capable of Discharging Low Voltage Electricity Showing Potent Antibacterial Activity for Treatment of Bacterial Skin Infection. Advanced Healthcare Materials, 2022, 11, e2102044.	7.6	10
299	Facile synthesis of Pr(OH)3 nanostructures and their application in water treatment. Materials Research Bulletin, 2012, 47, 1783-1786.	5.2	9
300	SnS/SnO heterostructures embedded in porous carbon microcages by boosting charge transfer for enhanced sodium-ion storage. Materials Technology, 2018, 33, 548-554.	3.0	9
301	Nanobelt-like vanadium dioxide with three-dimensional interconnected tunnel structure enables ultrafast Al-ion storage. Materials Today Energy, 2021, 19, 100578.	4.7	9
302	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie, 2021, 133, 909-916.	2.0	9
303	Recent progress and challenges of coâ€based compound for aqueous Zn battery. Nano Select, 2021, 2, 1642-1660.	3.7	9
304	A new high-performance rechargeable alkaline Zn battery based on mesoporous nitrogen-doped oxygen-deficient hematite. Science China Materials, 2022, 65, 920-928.	6.3	9
305	Calcium peroxide pre-treatment improved the anaerobic digestion of primary sludge and its co-digestion with waste activated sludge. Science of the Total Environment, 2022, 828, 154404.	8.0	9
306	A high-voltage aqueous antimony-manganese hybrid battery based on all stripping/plating mechanism. Energy Storage Materials, 2022, 49, 529-536.	18.0	9

#	Article	IF	CITATIONS
307	Crystal form modulation enables high-performance manganese dioxide cathode for aqueous zinc ion battery. Journal of Alloys and Compounds, 2022, 913, 165207.	5.5	9
308	Electrochemical Synthesis and Characterization of TbO[sub 2â^'x] Flowerlike Nanostructures. Electrochemical and Solid-State Letters, 2008, 11, K85.	2.2	8
309	Lithium Ferrites@Polydopamine Core–Shell Nanoparticles as a New Robust Negative Electrode for Advanced Asymmetric Supercapacitors. Particle and Particle Systems Characterization, 2018, 35, 1800128.	2.3	8
310	Resinâ€Derived Ni ₃ S ₂ /Carbon Nanocomposite for Advanced Rechargeable Aqueous Znâ€Based Batteries. Particle and Particle Systems Characterization, 2019, 36, 1900183.	2.3	8
311	How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge?. Science of the Total Environment, 2020, 713, 136594.	8.0	8
312	Facile Fabrication of Ga 2 O 3 Nanorods for Photoelectrochemical Water Splitting. ChemNanoMat, 2020, 6, 208-211.	2.8	8
313	Oxygen incorporated solution-processed high- <i>κ</i> La ₂ O ₃ dielectrics with large-area uniformity, low leakage and high breakdown field comparable with ALD deposited films. Journal of Materials Chemistry C, 2020, 8, 5163-5173.	5.5	8
314	Mo ₂ C/Reduced Graphene Oxide Composites with Enhanced Electrocatalytic Activity and Biocompatibility for Microbial Fuel Cells. Chemistry - A European Journal, 2021, 27, 4291-4296.	3.3	8
315	Structural regulation strategies towards high performance organic materials for next generation aqueous Zn-based batteries. ChemPhysMater, 2022, 1, 86-101.	2.8	8
316	Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2022, 12, 2.	3.5	8
317	Iron decorated ultrathin cobaltous hydroxide nanoflakes with impressive electrochemical reactivity for aqueous Zn batteries. Chemical Communications, 2022, 58, 3977-3980.	4.1	8
318	Electrochemical synthesis and shape control of Al–Sb nanostructures. Materials Letters, 2008, 62, 4280-4282.	2.6	7
319	Tuning the magnetization dynamics of TbIII-based single-chain magnets through substitution on the nitronyl nitroxide radical. Dalton Transactions, 2019, 48, 8989-8994.	3.3	7
320	Nickel@Nickel Oxide Dendritic Architectures with Boosted Electrochemical Reactivity for Aqueous Nickel–Zinc Batteries. ChemElectroChem, 2020, 7, 4572-4577.	3.4	7
321	Iron-based nanoparticles encapsulated in super-large 3D carbon nanotube networks as a bifunctional catalyst for ultrastable rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 25913-25918.	10.3	7
322	Mn ₃ O ₄ @MnS composite nanoparticles as cathode materials for aqueous rechargeable Zn ion batteries. Functional Materials Letters, 2021, 14, .	1.2	7
323	Oxygen Functionalized CoP Nanowires as High-Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction and Full Water Splitting. Journal of the Electrochemical Society, 2020, 167, 124512.	2.9	7
324	Efficient electroless nickel plating from highly active Ni–B nanoparticles for electric circuit patterns on Al2O3 ceramics. Journal of Materials Chemistry C, 2013, 1, 5149.	5.5	6

#	Article	IF	CITATIONS
325	Enhanced Photocatalytic Activity from Mixtureâ€Fuel Cells by ZnO Templateâ€Assisted Pdâ€Pt Hollow Nanorods. ChemistrySelect, 2017, 2, 9842-9846.	1.5	6
326	Facile preparation of porous carbon nanomaterials for robust supercapacitors. Journal of Materials Research, 2018, 33, 1142-1154.	2.6	6
327	Do zinc dendrites exist in neutral zinc batteries?. Green Energy and Environment, 2020, 5, 6-7.	8.7	6
328	Carbonâ€Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. ChemPlusChem, 2021, 86, 1322-1341.	2.8	6
329	Promoting ion adsorption and desolvation kinetics enables high capacity and rate capability of stibium anode for advanced alkaline battery. Journal of Materials Science and Technology, 2022, 131, 60-67.	10.7	6
330	Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5053-5059.	10.3	5
331	Low-Cost Nanomaterials for Photoelectrochemical Water Splitting. Green Energy and Technology, 2014, , 267-295.	0.6	4
332	Enhancing Catalytic Activity and Selectivity by Plasmon-Induced Hot Carriers. IScience, 2020, 23, 101107.	4.1	4
333	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	5.9	4
334	Oxygen-deficient NiCo2O4 nanowires as the robust cathode for high-performance nickel–zinc batteries. Journal of Materials Research, 2022, 37, 2185-2194.	2.6	4
335	Electrochemical preparation and photoluminescence of Y1.95Eu0.05O3 hierarchical nanosheets. Inorganic Chemistry Communication, 2011, 14, 1032-1035.	3.9	3
336	An optimal current reference generation method for IPM brushless machines with non-sinusoidal back-EMF. , 2016, , .		3
337	Toward materials-by-design: achieving functional materials with physical and chemical effects. Nanotechnology, 2020, 31, 024002.	2.6	3
338	Coercive Fields Above 6â€T in Two Cobalt(II)–Radical Chain Compounds. Angewandte Chemie, 2020, 132, 10697-10705.	2.0	3
339	Enhancing Liâ€lon Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance. Small, 2021, 17, e2104178.	10.0	3
340	An effective way to enhance photoelectrochemical photoactivity and stability of ZnO nanorod arrays by carbon and nitrogen co-treatment. , 2013, , .		2
341	Functional Nanomaterials for Energy Conversion and Storage. Journal of Nanomaterials, 2016, 2016, 1-1.	2.7	2
342	Facile hydrothermal synthesis of cobaltosic sulfide nanorods for high performance supercapacitors. RSC Advances, 2022, 12, 11665-11670.	3.6	2

#	Article	IF	CITATIONS
343	Frontispiece: New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, .	3.3	1
344	Corrosion engineering towards a high-energy Mn doped Co ₃ O ₄ nanoflake cathode for rechargeable Zn-based batteries. Materials Advances, 2022, 3, 6441-6445.	5.4	1
345	Semiconductor Nanowires and Nanowire Heterostructures for Supercapacitors. , 2013, , .		0
346	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. , 2013, , .		0
347	Hydrogen-Treated TiO ₂ Nanowires for Charge Storage and Photoelectrochemical Water Splitting. , 2017, , 189-213.		0
348	Frontispiece: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
349	Frontispiz: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, .	2.0	0
350	Frontispiece: Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, .	3.3	0
351	Three-dimensional "skin-framework―hybrid network as electroactive material platform for high-performance solid-state asymmetric supercapacitor. RSC Advances, 2019, 9, 12877-12885.	3.6	0
352	Mn-N-C Nanostructure Derived from MnO2-x/PANI as Highly Performing Cathode Additive in Li-S Battery. Reactions, 2021, 2, 275-286.	2.1	0