
Gokhan Kilic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: A characterization study through physical, optical, structural and radiation shielding properties. Ceramics International, 2022, 48, 1152-1165.	4.8	27
2	A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties. Ceramics International, 2022, 48, 6780-6791.	4.8	32
3	Structural characterization and gamma-ray attenuation properties of rice-like α-TeO2 crystalline microstructures (CMS) grown rapidly on free surface of tellurite-based glasses. Journal of Materials Research and Technology, 2022, 16, 1179-1189.	5.8	8
4	Synthesis and characterization of vanadium(V) oxide reinforced calcium-borate glasses: Experimental assessments on Al2O3/BaO2/ZnO contributions. Journal of Non-Crystalline Solids, 2022, 580, 121397.	3.1	14
5	A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chemistry, 2022, 20, 69-80.	1.9	45
6	Synthesis and experimental characterization on fast neutron and gamma-ray attenuation properties of high-dense and transparent Cadmium oxide (CdO) glasses for shielding purposes. Ceramics International, 2022, 48, 23444-23451.	4.8	29
7	Four-phases characterization of synthesised CeO2 thin films: Effect of molarity on structural, optical, physical properties and gamma-ray attenuation parameters. Ceramics International, 2022, 48, 25041-25048.	4.8	1
8	CdO-rich quaternary tellurite glasses for nuclear safety purposes: Synthesis and experimental gamma-ray and neutron radiation assessment of high-density and transparent samples. Optical Materials, 2022, 129, 112512.	3.6	24
9	Diagnostic and therapeutic radioisotopes in nuclear medicine: Determination of gamma-ray transmission factors and safety competencies of high-dense and transparent glassy shields. Open Chemistry, 2022, 20, 517-524.	1.9	9
10	Calculation of NaI(Tl) detector efficiency using ²²⁶ Ra, ²³² Th, and ⁴⁰ K radioisotopes: Three-phase Monte Carlo simulation study. Open Chemistry, 2022, 20, 541-549.	1.9	5
11	Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3. Optik, 2022, 267, 169643.	2.9	11
12	Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. Ceramics International, 2021, 47, 6154-6168.	4.8	35
13	A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceramics International, 2021, 47, 2572-2583.	4.8	44
14	Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: Fabrication, physical, structural characterization, and radiation shielding efficacy. Optical Materials, 2021, 112, 110757.	3.6	59
15	In-Silico Monte Carlo Simulation Trials for Investigation of V2O5 Reinforcement Effect on Ternary Zinc Borate Glasses: Nuclear Radiation Shielding Dynamics. Materials, 2021, 14, 1158.	2.9	9
16	A Systematical Characterization of TeO2–V2O5 Glass System Using Boron (III) Oxide and Neodymium (III) Oxide Substitution: Resistance Behaviors against Ionizing Radiation. Applied Sciences (Switzerland), 2021, 11, 3035.	2.5	32
17	The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	40
18	Deposition of cadmium (II) oxide-reinforced VP glassy thin films by thermionic vacuum arc (TVA) and structural characterization. Journal of Materials Science: Materials in Electronics, 2021, 32, 16311-16323.	2.2	2

GOKHAN KILIC

#	Article	IF	CITATIONS
19	The Impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses. Optical Materials, 2021, 116, 111084.	3.6	24
20	Newly Developed Vanadium-Based Glasses and Their Potential for Nuclear Radiation Shielding Aims: A Monte Carlo Study on Gamma Ray Attenuation Parameters. Materials, 2021, 14, 3897.	2.9	15
21	Cadmium oxide reinforced 46V2O5–46P2O5–(8â^'x)B2O3–xCdO semiconducting oxide glasses and resistance behaviors against ionizing gamma rays. Journal of Materials Research and Technology, 2021, 13, 2336-2349.	5.8	18
22	Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: Synthesis and optical, structural, physical and thermal properties. Ceramics International, 2021, 47, 18517-18531.	4.8	52
23	Novel HMO-Glasses with Sb2O3 and TeO2 for Nuclear Radiation Shielding Purposes: A Comparative Analysis with Traditional and Novel Shields. Materials, 2021, 14, 4330.	2.9	17
24	Optical and physical behaviours of newly developed germanium-tellurium (GeTe) glasses: a comprehensive experimental and in-silico study with commercial glasses and ordinary shields. Journal of Materials Science: Materials in Electronics, 2021, 32, 22953-22973.	2.2	11
25	A Closer Look on Nuclear Radiation Shielding Properties of Eu3+ Doped Heavy Metal Oxide Glasses: Impact of Al2O3/PbO Substitution. Materials, 2021, 14, 5334.	2.9	12
26	Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system. Ceramics International, 2021, 47, 27305-27315.	4.8	32
27	Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x)Li2O-xGd2O3 glass system. Journal of Alloys and Compounds, 2021, 877, 160302.	5.5	32
28	Exploration of material characteristics of tantalum borosilicate glasses by experimental, simulation, and theoretical methods. Journal of Physics and Chemistry of Solids, 2021, 159, 110282.	4.0	17
29	Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu. Materials, 2021, 14, 5894.	2.9	4
30	Mechanical Properties, Elastic Moduli, and Gamma Radiation Shielding Properties of Some Zinc Sodium Tetraborate Glasses: A Closer Look at ZnO/CaO Substitution. Journal of Electronic Materials, 2021, 50, 6844-6853.	2.2	13
31	Fast Neutron and Gamma-Ray Attenuation Properties of Some HMO Tellurite-Tungstate-Antimonate Glasses: Impact of Sm3+ Ions. Applied Sciences (Switzerland), 2021, 11, 10168.	2.5	9
32	Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials, 2021, 14, 6668.	2.9	22
33	Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. Journal of Non-Crystalline Solids, 2020, 527, 119747.	3.1	28
34	Ta2O5-doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	21
35	Charged particles and gamma-ray shielding features of oxyfluoride semiconducting glasses: TeO2-Ta2O5-ZnO/ZnF2. Ceramics International, 2020, 46, 25035-25042.	4.8	43
36	Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization. Journal of Materials Science: Materials in Electronics, 2020, 31, 12892-12902.	2.2	19

GOKHAN KILIC

#	Article	IF	CITATIONS
37	Structural and physical characterization study on synthesized tellurite (TeO2) and germanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Optical Materials, 2020, 110, 110533.	3.6	40
38	Synthesis of novel AgO-doped vanadium–borophosphate semiconducting glasses and investigation of their optical, structural, and thermal properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 8986-8995.	2.2	27
39	Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5– P2O5–B2O3: Physical, thermal, and nuclear radiation shielding properties. Ceramics International, 2020, 46, 19318-19327.	4.8	66
40	The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	18
41	Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. Journal of Non-Crystalline Solids, 2020, 544, 120169.	3.1	51
42	Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. Journal of Non-Crystalline Solids, 2020, 533, 119905.	3.1	96
43	FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 9099-9113.	2.2	90
44	Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses. Journal of Materials Science: Materials in Electronics, 2019, 30, 15156-15167.	2.2	30
45	Characterization of Er3+ doped ZnTeTa semiconducting oxide glass. Journal of Materials Science: Materials in Electronics, 2019, 30, 8920-8930.	2.2	26
46	The synthesis and characterization of zinc-tellurite semiconducting oxide glasses containing Ta ₂ O ₅ . Materials Research Express, 2019, 6, 065907.	1.6	24
47	Optical and surface properties of semiconducting glassy thin films prepared by RF sputtering technique from B2O3â‹Na2Oâ‹MgOâ‹V2O5:CoO glass targets. Materials Letters, 2012, 68, 193-196.	2.6	3
48	Formation of black glass to be used in solar collectors as absorbent and CuO and Fe2O3's effect on this glass. International Journal of Hydrogen Energy, 2009, 34, 5196-5200.	7.1	9
49	Synthesis and Optical, Thermal, Structural Investigation of Zinc-Borate Glasses Containing V2O5. Adıyaman University Journal of Science, 0, , .	0.0	3