Ming-shunchen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5631905/publications.pdf

Version: 2024-02-01

68 3,080 26 54
papers citations h-index g-index

69 69 69 2797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A protein from the salivary glands of the pea aphid, <i>Acyrthosiphon pisum</i> , is essential in feeding on a host plant. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9965-9969.	7.1	339
2	Inducible direct plant defense against insect herbivores: A review. Insect Science, 2008, 15, 101-114.	3.0	327
3	Indirect plant defense against insect herbivores: a review. Insect Science, 2018, 25, 2-23.	3.0	225
4	A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Current Biology, 2015, 25, 613-620.	3.9	171
5	Reactive Oxygen Species Are Involved in Plant Defense against a Gall Midge Â. Plant Physiology, 2010, 152, 985-999.	4.8	161
6	Gall Midges (Hessian Flies) as Plant Pathogens. Annual Review of Phytopathology, 2012, 50, 339-357.	7.8	130
7	Gene Expression of Different Wheat Genotypes During Attack by Virulent and Avirulent Hessian Fly (Mayetiola destructor) Larvae. Journal of Chemical Ecology, 2007, 33, 2171-2194.	1.8	105
8	Virulence Analysis of Hessian Fly Populations From Texas, Oklahoma, and Kansas. Journal of Economic Entomology, 2009, 102, 774-780.	1.8	97
9	Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-based Defense Signals in Wheat Involved in Resistance to Herbivory. Journal of Chemical Ecology, 2010, 36, 260-276.	1.8	86
10	Hessian Fly (<i>Mayetiola destructor</i>) Attack Causes a Dramatic Shift in Carbon and Nitrogen Metabolism in Wheat. Molecular Plant-Microbe Interactions, 2008, 21, 70-78.	2.6	77
11	Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theoretical and Applied Genetics, 2005, 111, 1308-1315.	3.6	73
12	A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Molecular Biology, 2004, 13, 101-108.	2.0	61
13	Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola) Tj ETQq1 1 0.7843	14 rgBT /C 2.6	Dverlock 10 Ti
14	Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theoretical and Applied Genetics, 2005, 111, 243-249.	3.6	56
15	Unusual conservation among genes encoding small secreted salivary gland proteins from a gall midge. BMC Evolutionary Biology, 2010, 10, 296.	3.2	55
16	Hessian Fly-Associated Bacteria: Transmission, Essentiality, and Composition. PLoS ONE, 2011, 6, e23170.	2.5	55
17	H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theoretical and Applied Genetics, 2005, 110, 1473-1480.	3.6	54
18	Avirulence Effector Discovery in a Plant Galling and Plant Parasitic Arthropod, the Hessian Fly (Mayetiola destructor). PLoS ONE, 2014, 9, e100958.	2.5	54

#	Article	IF	CITATIONS
19	Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly [(say)]. Insect Biochemistry and Molecular Biology, 2005, 35, 23-32.	2.7	52
20	Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis): Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance. BMC Genomics, 2009, 10, 286.	2.8	42
21	Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat. Scientific Reports, 2015, 5, 8092.	3.3	38
22	Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. Annual Review of Phytopathology, 2020, 58, 1-22.	7.8	37
23	Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genomics, 2015, 16, 108.	2.8	36
24	Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nature Communications, 2013, 4, 2070.	12.8	33
25	A Neo-Sex Chromosome That Drives Postzygotic Sex Determination in the Hessian Fly (<i>Mayetiola) Tj ETQq1 1</i>	0.78431 ⁴	4 rgBT /Ove
26	Identification of two novel Hessian fly resistance genes H35 and H36 in a hard winter wheat line SD06165. Theoretical and Applied Genetics, 2020, 133, 2343-2353.	3.6	31
27	Cytokinins Are Abundant and Widespread among Insect Species. Plants, 2020, 9, 208.	3.5	31
28	The gut transcriptome of a gall midge, Mayetiola destructor. Journal of Insect Physiology, 2010, 56, 1198-1206.	2.0	26
29	Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genomics, 2013, 14, 423.	2.8	26
30	Rapid Mobilization of Membrane Lipids in Wheat Leaf Sheaths During Incompatible Interactions with Hessian Fly. Molecular Plant-Microbe Interactions, 2012, 25, 920-930.	2.6	25
31	Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13. BMC Genomics, 2006, 7, 7.	2.8	24
32	Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). Journal of Insect Physiology, 2009, 55, 105-112.	2.0	23
33	Differential Responses of Wheat Inhibitor-like Genes to Hessian Fly, Mayetiola destructor, Attacks During Compatible and Incompatible Interactions. Journal of Chemical Ecology, 2008, 34, 1005-1012.	1.8	22
34	Virulence and Biotype Analyses of Hessian Fly (Diptera: Cecidomyiidae) Populations From Texas, Louisiana, and Oklahoma. Journal of Economic Entomology, 2014, 107, 417-423.	1.8	22
35	Hessian Fly (Diptera: Cecidomyiidae) Interactions With Barley, Rice, and Wheat Seedlings. Journal of Economic Entomology, 2009, 102, 1663-1672.	1.8	21
36	Pyrosequencing Reveals the Predominance of Pseudomonadaceae in Gut Microbiome of a Gall Midge. Pathogens, 2014, 3, 459-472.	2.8	21

#	Article	IF	Citations
37	A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes. BMC Genomics, 2009, 10, 293.	2.8	20
38	H22, a major resistance gene to the Hessian fly (Mayetiola destructor), is mapped to the distal region of wheat chromosome 1DS. Theoretical and Applied Genetics, 2006, 113, 1491-1496.	3.6	19
39	Changes in Phytohormones and Fatty Acids in Wheat and Rice Seedlings in Response to Hessian Fly (Diptera: Cecidomyiidae) Infestation. Journal of Economic Entomology, 2011, 104, 1384-1392.	1.8	19
40	Genetic association of OPRgenes with resistance to Hessian fly in hexaploid wheat. BMC Genomics, 2013, 14, 369.	2.8	19
41	Comparative gut transcriptome analysis reveals differences between virulent and avirulent Russian wheat aphids, Diuraphis noxia. Arthropod-Plant Interactions, 2014, 8, 79-88.	1.1	19
42	Characterization of two genes expressed in the salivary glands of the Hessian fly, Mayetiola destructor (Say). Insect Biochemistry and Molecular Biology, 2004, 34, 229-237.	2.7	18
43	Differential Accumulation of Phytohormones in Wheat Seedlings Attacked by Avirulent and Virulent Hessian Fly (Diptera: Cecidomyiidae) Larvae. Journal of Economic Entomology, 2010, 103, 178-185.	1.8	17
44	Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor. BMC Genomics, 2013, 14, 187.	2.8	17
45	Serine and cysteine protease-like genes in the genome of a gall midge and their interactions with host plant genotypes. Insect Biochemistry and Molecular Biology, 2013, 43, 701-711.	2.7	17
46	An insect nucleoside diphosphate kinase (NDK) functions as an effector protein in wheat - Hessian fly interactions. Insect Biochemistry and Molecular Biology, 2018, 100, 30-38.	2.7	17
47	A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, <i>Mayetiola destructor </i> . Journal of Insect Science, 2006, 6, 1-11.	1.5	16
48	Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian citrus psyllid, Diaphorina citri. Journal of Proteomics, 2021, 238, 104136.	2.4	16
49	Hessian Fly. , 2008, , 93-102.		13
50	Increasing Temperature Reduces Wheat Resistance Mediated by Major Resistance Genes to Mayetiola destructor (Diptera: Cecidomyiidae). Journal of Economic Entomology, 2018, 111, 1433-1438.	1.8	11
51	Impact of Hessian fly, Mayetiola destructor, on Developmental Aspects of Hard Red Winter Wheat in Kansas. Southwestern Entomologist, 2016, 41, 321-330.	0.2	10
52	Transcriptomic Analyses of Secreted Proteins From the Salivary Glands of Wheat Midge Larvae. Journal of Insect Science, 2018, 18, .	1.5	10
53	Identification of a major QTL for Hessian fly resistance in wheat cultivar â€~Chokwang'. Crop Journal, 2022, 10, 775-782.	5. 2	10
54	Cloning and characterization of cDNAS encoding carboxypeptidase-like proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)]â†. Insect Biochemistry and Molecular Biology, 2006, 36, 665-673.	2.7	9

#	Article	IF	CITATIONS
55	Differential localization of Hessian fly candidate effectors in resistant and susceptible wheat plants. Plant Direct, 2020, 4, e00246.	1.9	9
56	Molecular Markers for Species Identification of Hessian Fly Males Caught on Sticky Pheromone Traps. Journal of Economic Entomology, 2014, 107, 1110-1117.	1.8	8
57	Massive Shift in Gene Expression during Transitions between Developmental Stages of the Gall Midge, Mayetiola Destructor. PLoS ONE, 2016, 11, e0155616.	2.5	8
58	Chromosomeâ€evel genome assembly for the hornedâ€gall aphid provides insights into interactions between gallâ€making insect and its host plant. Ecology and Evolution, 2022, 12, e8815.	1.9	8
59	Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants. International Journal of Molecular Sciences, 2016, 17, 1324.	4.1	7
60	The Hessian fly recessive resistance gene h4 mapped to chromosome 1A of the wheat cultivar †Java†using genotyping-by-sequencing. Theoretical and Applied Genetics, 2020, 133, 2927-2935.	3.6	7
61	Conserved and Unique Putative Effectors Expressed in the Salivary Glands of Three Related Gall Midge Species. Journal of Insect Science, 2018, 18, .	1.5	6
62	Genes encoding a group of related small secreted proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Insect Science, 2006, 13, 339-348.	3.0	5
63	Potential Pathways and Genes Involved in Lac Synthesis and Secretion in Kerria chinensis (Hemiptera:) Tj ETQq $1\ 1$	0,784314 2:2	ł rgBT /Over
64	A Horizontal Gene Transfer Led to the Acquisition of a Fructan Metabolic Pathway in a Gall Midge. Advanced Biology, 2020, 4, 1900275.	3.0	4
65	Exogenous Salicylic Acid Enhances the Resistance of Wheat Seedlings to Hessian Fly (Diptera:) Tj ETQq1 1 0.7843	314 rgBT /0	Ogerlock 10
66	â€~Gallagher' and â€~Iba' hard red winter wheat: Halfâ€sibs inseparable by yield gain, separable by produc preference. Journal of Plant Registrations, 2021, 15, 177-195.	er O.5	3
67	Analyzing Molecular Basis of Heat-Induced Loss-of-Wheat Resistance to Hessian Fly (Diptera:) Tj ETQq1 1 0.7843.	l4 rgBT /O 1.8	verlock 10 1
68	A new strategy for using historical imbalanced yield data to conduct genome-wide association studies and develop genomic prediction models for wheat breeding. Molecular Breeding, 2022, 42, 1.	2.1	0