
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5630957/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Transfer of graphene thin film obtained by PECVD method to Au/p-Si rectifier junction as interfacial<br>layer and analysis of its barrier characteristics depending on sample temperature. Journal of<br>Materials Science: Materials in Electronics, 2022, 33, 14627-14643. | 2.2 | 3         |
| 2  | Effects of aging on the electrical properties of Au/n-Si/Ti, Cu/n-Si/Ti and AuCu/n-Si/Ti Schottky diodes.<br>Materials Today: Proceedings, 2021, 46, 6954-6959.                                                                                                              | 1.8 | 1         |
| 3  | The temperature dependence of current-voltage characteristics of CuAuAg/n-Si/Ti Schottky diode.<br>Materials Today: Proceedings, 2021, 46, 6924-6928.                                                                                                                        | 1.8 | 2         |
| 4  | Interpretation of the l–V, C–V and G/ω-V characteristics of the Au/ZnS/n-GaAs/In structure depending on annealing temperature. Physica B: Condensed Matter, 2021, 611, 412801.                                                                                               | 2.7 | 2         |
| 5  | Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure<br>Depending on Sample Temperature. Journal of Electronic Materials, 2021, 50, 4752-4761.                                                                                         | 2.2 | 8         |
| 6  | Annealing effect on I-V and C-V characteristics of Al/n-InP Schottky diodes at low temperatures.<br>Materials Today: Proceedings, 2021, 46, 6979-6985.                                                                                                                       | 1.8 | 5         |
| 7  | Optimizing quality of lead-free perovskite thin film with anti-solvent engineering and co-doping<br>SnBr2/SnF2; its solar cell performance. Optical Materials, 2020, 110, 110524.                                                                                            | 3.6 | 16        |
| 8  | Effects of surface passivation on capacitance-voltage and conductance-voltage characteristics of<br>Al/p-type Si/Al and Al/V2O5/p-type Si/Al diodes. Journal of Physics and Chemistry of Solids, 2020, 146,<br>109564.                                                       | 4.0 | 10        |
| 9  | A comparative study on theoretical and experimental methods using basic electrical parameters of Au/CNTs/InP/Au–Ge diodes. Journal of Alloys and Compounds, 2020, 824, 153899.                                                                                               | 5.5 | 5         |
| 10 | Analysis of thermal annealing effects of Au-Cu/n-GaAs/In and Ag-Cu/n- GaAs/In Schottky diodes with different ratios Au-Cu and Ag-Cu alloys. Materials Today: Proceedings, 2019, 18, 1918-1926.                                                                               | 1.8 | 2         |
| 11 | The protection from the effects of gamma rays of metal-semiconductor diodes by means of ZnO thin interface layer. Radiation Physics and Chemistry, 2019, 165, 108416.                                                                                                        | 2.8 | 9         |
| 12 | The electrical current characteristics of thermally annealed Co/anodic oxide layer/ <i>n</i> -GaAs sandwich structures. International Journal of Modern Physics B, 2019, 33, 1950232.                                                                                        | 2.0 | 3         |
| 13 | Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes.<br>Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 667-678.                                                                                                | 1.5 | 11        |
| 14 | Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an<br>Interlayer in a Wide Temperature Range. Journal of Electronic Materials, 2019, 48, 3169-3182.                                                                               | 2.2 | 15        |
| 15 | Effects of Au-Ag and Au-Cu alloy ratios on the temperature dependent current-voltage characteristics of Au-Ag/n-GaAs/In and Au-Cu/n-GaAs/In Schottky diodes. Materials Today: Proceedings, 2019, 18, 1936-1945.                                                              | 1.8 | 2         |
| 16 | The effects of gamma irradiation on electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure. AIP<br>Conference Proceedings, 2018, , .                                                                                                                                      | 0.4 | 1         |
| 17 | Influence of anodic passivation on electrical characteristics of Al/p-Si/Al and Al/V2O5/p-Si/Al diodes.<br>Journal of Materials Science: Materials in Electronics, 2017, 28, 7582-7592.                                                                                      | 2.2 | 8         |
| 18 | Nanorods/nanostructral vanadium oxide prepared by spray pyrolysis. AIP Conference Proceedings, 2017, , .                                                                                                                                                                     | 0.4 | 0         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The stability of electrical characteristics of Ti/n-Si/Ag , Ti/n-Si/Cu and Ti/n-Si/AgCu diodes prepared under the same conditions with respect to increasing aging time. Materials Science in Semiconductor Processing, 2017, 68, 186-192. | 4.0 | 7         |
| 20 | Analysis of aging time dependent electrical characteristics of AuCu/n-Si/Ti Schottky type diode. AIP<br>Conference Proceedings, 2017, , .                                                                                                  | 0.4 | 0         |
| 21 | Characterization of deposited CdS thin films by Spray Pyrolysis method and used in Cd/CdS/p-Si/Al structure. AIP Conference Proceedings, 2017, , .                                                                                         | 0.4 | 0         |
| 22 | Effects Of the γ- radiation on the electrical characteristics of the Au/n-Si/Au-Sb Schottky diode.<br>Journal of Physics: Conference Series, 2016, 707, 012018.                                                                            | 0.4 | 4         |
| 23 | Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode. Journal of Physics:<br>Conference Series, 2016, 707, 012013.                                                                                                 | 0.4 | 7         |
| 24 | Effects of ageing on the electrical characteristics of Zn/ZnS/n-GaAs/In structure. Journal of Physics:<br>Conference Series, 2016, 707, 012016.                                                                                            | 0.4 | 0         |
| 25 | Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method. Materials<br>Research Bulletin, 2016, 81, 55-62.                                                                                                 | 5.2 | 9         |
| 26 | The Effects of Growth Parameters on Electrical Characteristics of In2S3/n-InP Junctions with In2S3<br>Interfacial Layer Obtained by Chemical Spray Pyrolysis Method. Materials Today: Proceedings, 2016, 3,<br>1262-1270.                  | 1.8 | 2         |
| 27 | Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure. Journal of Physics:<br>Conference Series, 2016, 707, 012025.                                                                                              | 0.4 | 3         |
| 28 | Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu3Se2/n-GaAs/In structure. Journal of Alloys and Compounds, 2015, 627, 200-205.                                                                   | 5.5 | 26        |
| 29 | Temperature dependent electrical properties of Cd/CdS/n-Si/Au-Sb structures. Materials Science in Semiconductor Processing, 2015, 30, 658-664.                                                                                             | 4.0 | 6         |
| 30 | Temperature dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3<br>interfacial layer obtained by using spray pyrolysis method. Journal of Alloys and Compounds, 2015, 646,<br>954-965.                       | 5.5 | 21        |
| 31 | Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 111-119.                         | 3.9 | 13        |
| 32 | The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 61-69.                     | 3.5 | 17        |
| 33 | The effects of thermal annealing on the electrical characteristics of Au/n–InP/In diode. Materials<br>Science in Semiconductor Processing, 2014, 28, 121-126.                                                                              | 4.0 | 10        |
| 34 | Temperature dependence of current–voltage characteristics of the Cd/CdS/n-GaAs/In sandwich structure. Journal of Physics and Chemistry of Solids, 2013, 74, 370-376.                                                                       | 4.0 | 8         |
| 35 | Some electrical and structural properties of Cd/CdS/n–Si/Au–Sb sandwich structure. Superlattices and Microstructures, 2012, 52, 416-429.                                                                                                   | 3.1 | 10        |
| 36 | Effect of temperature on the capacitance–frequency and conductance–voltage characteristics of polyaniline/p-Si/Al MIS device at high frequencies. Microelectronics Reliability, 2012, 52, 1362-1366.                                       | 1.7 | 29        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Conductance and series resistance measurements of polyaniline/p-Si and polypyrrole/InP junction devices. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 38-42.                                                                                 | 2.7 | 4         |
| 38 | Influence of film thickness on structural and optical properties of ZnS thin films obtained by SILAR<br>method and analysis of Zn/ZnS/nâ€GaAs/In sandwich structure. Physica Status Solidi (A) Applications and<br>Materials Science, 2012, 209, 687-693.        | 1.8 | 18        |
| 39 | Deposition and Characterization of CdS, CuS and ZnS Thin Films Deposited by SILAR Method. Acta<br>Physica Polonica A, 2012, 121, 33-35.                                                                                                                          | 0.5 | 27        |
| 40 | Temperature Dependent Electrical Characteristics Of Cuâ^•CuSâ^•n-Siâ^•Au-Sb Structure Deposited By SILAR<br>Method. AIP Conference Proceedings, 2011, , .                                                                                                        | 0.4 | 1         |
| 41 | Temperature dependent current–voltage characteristics of the Zn/ZnO/n-Si/Au–Sb structure with<br>ZnO interface layer grown on n-Si substrate by SILAR method. Microelectronic Engineering, 2011, 88,<br>3075-3079.                                               | 2.4 | 22        |
| 42 | Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by<br>SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184.                                                                                             | 1.7 | 6         |
| 43 | Effects of ageing on the electrical characteristics of Cd/CdS/n-Si/Au–Sb structure deposited by SILAR method. Journal of Physics and Chemistry of Solids, 2011, 72, 1506-1514.                                                                                   | 4.0 | 17        |
| 44 | ZnS thin film and Zn/ZnS/n-Si/Au-Sb sandwich structure grown with SILAR method and defining the characteristic parameters. Materials Science in Semiconductor Processing, 2011, 14, 28-36.                                                                       | 4.0 | 21        |
| 45 | Temperature dependent current–voltage characteristics of the Cd/CdO/n–Si/Au–Sb structure.<br>Current Applied Physics, 2010, 10, 513-520.                                                                                                                         | 2.4 | 29        |
| 46 | Analysis of the electrical characteristics of Zn/ZnSe/n-Si/Au–Sb structure fabricated using SILAR method as a function of temperature. Journal of Alloys and Compounds, 2010, 506, 388-394.                                                                      | 5.5 | 30        |
| 47 | Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In<br>Schottky diodes. Journal of Materials Science: Materials in Electronics, 2009, 20, 105-112.                                                                  | 2.2 | 31        |
| 48 | Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current–voltage measurements<br>at low temperatures. Materials Science and Engineering C, 2009, 29, 1486-1490.                                                                            | 7.3 | 57        |
| 49 | Temperature-dependent current–voltage characteristics of the Au/n-InP diodes with inhomogeneous<br>Schottky barrier height. Physica B: Condensed Matter, 2009, 404, 1558-1562.                                                                                   | 2.7 | 49        |
| 50 | Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au–Sb sandwich structure.<br>Journal of Alloys and Compounds, 2009, 484, 570-574.                                                                                                      | 5.5 | 25        |
| 51 | Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures.<br>Microelectronic Engineering, 2008, 85, 278-283.                                                                                                                     | 2.4 | 97        |
| 52 | Calculation from the current–voltage and capacitance–voltage measurements of characteristics<br>parameters of Cd/CdS/n-Si/Au-Sb structure with CdS interface layer grown on n-Si substrate by SILAR<br>method. Microelectronic Engineering, 2008, 85, 1831-1835. | 2.4 | 3         |
| 53 | Effective atomic numbers of polypyrrole via transmission method in the energy range 15.74–40.93keV.<br>Annals of Nuclear Energy, 2008, 35, 432-437.                                                                                                              | 1.8 | 17        |
| 54 | Reverse bias capacitance–voltage characteristics of Al/polyaniline/p-Si/Al structure as a function of temperature. Journal of Non-Crystalline Solids, 2008, 354, 4991-4995.                                                                                      | 3.1 | 18        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes. Semiconductor Science and Technology, 2007, 22, 851-854.                                                            | 2.0 | 31        |
| 56 | A critical look at quantum diffusion and some of its interesting aspects. European Physical Journal B, 2007, 59, 69-73.                                                                                                    | 1.5 | 1         |
| 57 | Electrical properties of polypyrrole/p-InP structure. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1572-1579.                                                                                            | 2.1 | 8         |
| 58 | Intrinsic Magnetic Flux of the Electron's Orbital and Spin Motion. International Journal of Theoretical Physics, 2006, 45, 1132-1151.                                                                                      | 1.2 | 10        |
| 59 | Aging effects on the interface state density obtained from current–voltage and<br>capacitance–frequency characteristics of polypyrrole/p-Si/Al structure. Journal of Applied Polymer<br>Science, 2006, 101, 2313-2319.     | 2.6 | 11        |
| 60 | The temperature dependence of current–voltage characteristics of the Au/Polypyrrole/p-Si/Al<br>heterojunctions. Journal of Physics Condensed Matter, 2006, 18, 2665-2676.                                                  | 1.8 | 44        |
| 61 | The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure. Polymer, 2005, 46, 563-568.                                     | 3.8 | 77        |
| 62 | Characterization of capacitance–frequency features of Sn/polypyrrole/n-Si structure as a function of temperature. Polymer, 2005, 46, 6148-6153.                                                                            | 3.8 | 35        |
| 63 | Current–voltage and capacitance–voltage characteristics of polypyrrole/p-InP structure. Vacuum,<br>2005, 77, 269-274.                                                                                                      | 3.5 | 90        |
| 64 | On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature. Applied Surface<br>Science, 2005, 250, 43-49.                                                                                          | 6.1 | 98        |
| 65 | On the some electrical properties of the non-ideal PPy/p-Si/Al structure. Polymer, 2005, 46, 10982-10988.                                                                                                                  | 3.8 | 60        |
| 66 | Determination of the Characteristic Parameters of Polyaniline/p-type Si/Al Structures from<br>Current-Voltage Measurements. International Journal of Polymeric Materials and Polymeric<br>Biomaterials, 2005, 54, 805-813. | 3.4 | 11        |
| 67 | The effects of the temperature on current–voltage characteristics of Sn/polypyrrole/n-Si structures.<br>Synthetic Metals, 2005, 150, 15-20.                                                                                | 3.9 | 28        |
| 68 | Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier<br>diodes. Physica B: Condensed Matter, 2004, 348, 397-403.                                                             | 2.7 | 44        |
| 69 | The effects of the time-dependent on the characteristic parameters of polypyrrole/p-type Si/Al diode.<br>Polymer, 2004, 45, 7335-7340.                                                                                     | 3.8 | 34        |
| 70 | The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure.<br>Applied Surface Science, 2004, 230, 404-410.                                                                          | 6.1 | 24        |
| 71 | Conductance and capacitance-frequency characteristics of polypyrrole/p-type silicon structures.<br>Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1334-1338.                                               | 2.1 | 18        |
| 72 | The absence of an ideal two dimensionality in QHE. Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2003, 0, 1493-1496.                                                                                  | 0.8 | 0         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Magnetic Superlattice: Localized Magnetostatic Waves and Magnetic Polaritons. Modern Physics<br>Letters B, 2003, 17, 829-839.                                                                                              | 1.9 | 0         |
| 74 | CALCULATION OF THE FLUX ASSOCIATED WITH THE ELECTRON'S SPIN ON THE BASIS OF THE MAGNETIC TOP MODEL. International Journal of Modern Physics B, 2002, 16, 607-614.                                                          | 2.0 | 15        |
| 75 | The Absence of Decimalg-Factor in QHE. Physica Status Solidi (B): Basic Research, 2002, 230, 133-142.                                                                                                                      | 1.5 | 4         |
| 76 | High-barrier height Sn/p-Si schottky diodes with interfacial layer by anodization process. Applied Surface Science, 2001, 172, 1-7.                                                                                        | 6.1 | 42        |
| 77 | Current–voltage and capacitance–voltage characteristics of metallic polymer/InSe(:Er) Schottky<br>contacts. Microelectronic Engineering, 2000, 51-52, 689-693.                                                             | 2.4 | 14        |
| 78 | On the Forward Bias Excess Capacitance at Intimate and MIS Schottky Barrier Diodes with Perfect or<br>Imperfect Ohmic Back Contact. Physica Scripta, 2000, 61, 209-212.                                                    | 2.5 | 58        |
| 79 | Cr/- and Fe/n-GaAs Schottky diodes: the stable current-voltage characteristic produced by high-temperature annealing. Semiconductor Science and Technology, 1999, 14, 114-117.                                             | 2.0 | 7         |
| 80 | On The Experimental Forward Capacitance-Voltage Characteristics of Schottky Barrier Diodes.<br>Journal for Manufacturing Science and Production, 1999, 2, 145-150.                                                         | 0.1 | 0         |
| 81 | The effects of the time-dependent and exposure time to air on Au/epilayer n-Si Schottky diodes. EPJ<br>Applied Physics, 1999, 6, 89-94.                                                                                    | 0.7 | 24        |
| 82 | Thermal treatment of the MIS and intimate Ni/n-LEC GaAs Schottky barrier diodes. Applied Surface<br>Science, 1998, 135, 350-356.                                                                                           | 6.1 | 17        |
| 83 | Thermal stability of Cr-Ni-Co alloy Schottky contacts on MBE -GaAs. Semiconductor Science and Technology, 1998, 13, 776-780.                                                                                               | 2.0 | 6         |
| 84 | The Effect of Thermal Anealing on the Series Resistance of Nearly Ideal and Ideal Ti/n-GaAs Schottky<br>Diodes. Physica Scripta, 1998, 58, 636-639.                                                                        | 2.5 | 5         |
| 85 | Effect of thermal annealing in nitrogen on theI - VandC - Vcharacteristics of Cr - Ni - Co alloy/LEC<br>n-GaAs Schottky diodes. Semiconductor Science and Technology, 1997, 12, 1028-1031.                                 | 2.0 | 32        |
| 86 | Influences of thermal annealing, the electrolyte pH, and current density on the interface state density<br>distribution of anodic MOS structures. Applied Physics A: Materials Science and Processing, 1997, 65,<br>33-37. | 2.3 | 14        |
| 87 | Characteristics of metallic polymer and Au Schottky contacts on cleaved surfaces of InSe(:Er).<br>Solid-State Electronics, 1997, 41, 924-926.                                                                              | 1.4 | 9         |
| 88 | Effect of series resistance on the forward current-voltage characteristics of Schottky diodes in the presence of interfacial layer. Solid-State Electronics, 1996, 39, 83-87.                                              | 1.4 | 89        |
| 89 | High barrier metallic polymer/p-type silicon Schottky diodes. Solid-State Electronics, 1996, 39, 677-680.                                                                                                                  | 1.4 | 61        |
| 90 | The bias-dependence change of barrier height of Schottky diodes under forward bias by including the series resistance effect. Physica Scripta, 1996, 53, 118-122.                                                          | 2.5 | 93        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes. Applied Physics A: Materials Science and Processing, 1996, 62, 269-273.                      | 2.3 | 7         |
| 92 | Interpreting the nonideal reverse bias C-V characteristics and importance of the dependence of Schottky barrier height on applied voltage. Physica B: Condensed Matter, 1995, 205, 41-50. | 2.7 | 150       |
| 93 | Barrier height enhancement by annealing Crî—,Niî—,Co alloy Schottky contacts on LEC GaAs. Solid-State<br>Electronics, 1992, 35, 1423-1426.                                                | 1.4 | 11        |
| 94 | Parameter extraction from non-ideal Câ^'V characteristics of a Schottky diode with and without interfacial layer. Solid-State Electronics, 1992, 35, 835-841.                             | 1.4 | 148       |
| 95 | Determination of the density of Si-metal interface states and excess capacitance caused by them.<br>Physica B: Condensed Matter, 1992, 179, 285-294.                                      | 2.7 | 75        |
| 96 | Nanostructures and Properties of Vanadium Oxide Thin Film Prepared by Spray Pyrolysis Method.<br>Materials Science Forum, 0, 890, 287-290.                                                | 0.3 | 0         |