
## Stefano Debei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629644/publications.pdf Version: 2024-02-01



STEEANO DEREL

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | In situ measurements of the physical characteristics of Titan's environment. Nature, 2005, 438, 785-791.                                                                                                                           | 27.8 | 620       |
| 2  | On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.                                                                                                                             | 12.6 | 366       |
| 3  | Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.                                                                                                                  | 12.6 | 310       |
| 4  | OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.                                                                                                                                  | 8.1  | 286       |
| 5  | The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.                                                                                                                                       | 12.6 | 259       |
| 6  | The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion<br>Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.                                                                           | 2.5  | 252       |
| 7  | Shape model, reference system definition, and cartographic mapping standards for comet<br>67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data.<br>Astronomy and Astrophysics, 2015, 583, A33. | 5.1  | 188       |
| 8  | Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.                                             | 5.1  | 188       |
| 9  | Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System. Science, 2011, 334, 487-490.                                                                                                                    | 12.6 | 179       |
| 10 | Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.                                                                                                                | 5.1  | 173       |
| 11 | The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.                                                                                                                             | 5.1  | 159       |
| 12 | Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.                                                                                                                    | 27.8 | 158       |
| 13 | EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.                                                                                        | 4.5  | 158       |
| 14 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images.<br>Astronomy and Astrophysics, 2015, 583, A26.                                                                                          | 5.1  | 153       |
| 15 | Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.                                                                                                     | 5.1  | 149       |
| 16 | Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.                                                                                                                          | 27.8 | 141       |
| 17 | E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 2010, 327, 190-193.                                                                                                                                   | 12.6 | 120       |
| 18 | Gravitational slopes, geomorphology, and material strengths of the nucleus of comet<br>67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.                                             | 5.1  | 113       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.                                                                                                       | 4.4  | 112       |
| 20 | The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Science Reviews, 2017, 212, 1897-1944.                                                                         | 8.1  | 111       |
| 21 | Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the<br>Royal Astronomical Society, 2017, 469, S357-S371.                                                          | 4.4  | 111       |
| 22 | Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and<br>Astrophysics, 2015, 583, A37.                                                                               | 5.1  | 108       |
| 23 | The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.                                                                                             | 5.1  | 107       |
| 24 | Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.                                                 | 5.1  | 102       |
| 25 | The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .                                                                                   | 10.1 | 100       |
| 26 | OSIRIS observations of meter-sized exposures of H <sub>2</sub> O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25. | 5.1  | 97        |
| 27 | Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science,<br>2016, 354, 1566-1570.                                                                                  | 12.6 | 97        |
| 28 | A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2. Nature, 2010, 467, 814-816.                                                                                                      | 27.8 | 94        |
| 29 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.                                              | 5.1  | 86        |
| 30 | The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.                                                     | 5.1  | 81        |
| 31 | Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research<br>Letters, 2015, 42, 5170-5178.                                                                               | 4.0  | 71        |
| 32 | SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planetary and Space Science, 2010, 58, 125-143.                                                 | 1.7  | 70        |
| 33 | Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.                                                                                                            | 5.1  | 67        |
| 34 | Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.                                                                                                 | 12.6 | 63        |
| 35 | 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS.<br>Astronomy and Astrophysics, 2015, 573, A62.                                                               | 5.1  | 60        |
| 36 | Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2015, 583, A36.                                                                       | 5.1  | 60        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.                                                         | 4.4 | 60        |
| 38 | Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.                                                                      | 5.1 | 59        |
| 39 | Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag.<br>Astronomy and Astrophysics, 2016, 586, A7.                                                                        | 5.1 | 55        |
| 40 | Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.                                                                                  | 5.1 | 53        |
| 41 | Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.                                                                  | 5.1 | 53        |
| 42 | Acceleration of individual, decimetre-sized aggregates in the lower coma of comet<br>67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.                            | 4.4 | 52        |
| 43 | Least-Squares-Based Reaction Control of Space Manipulators. Journal of Guidance, Control, and Dynamics, 2012, 35, 976-986.                                                                                        | 2.8 | 51        |
| 44 | SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.                                                                                                 | 8.1 | 47        |
| 45 | Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, s606-s625.                                                | 4.4 | 45        |
| 46 | An evaluation of ROS-compatible stereo visual SLAM methods on a nVidia Jetson TX2. Measurement:<br>Journal of the International Measurement Confederation, 2019, 140, 161-170.                                    | 5.0 | 45        |
| 47 | The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the<br>Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.                     | 4.4 | 44        |
| 48 | Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.                                         | 5.1 | 43        |
| 49 | Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax<br>measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society,<br>2017, 469, S276-S284. | 4.4 | 43        |
| 50 | Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and<br>Astrophysics, 2016, 586, A80.                                                                                        | 5.1 | 43        |
| 51 | Geomorphology and spectrophotometry of Philae's landing site on comet<br>67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.                                                                   | 5.1 | 41        |
| 52 | The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet<br>67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.                     | 4.4 | 40        |
| 53 | Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and<br>Astrophysics, 2018, 611, A33.                                                                                     | 5.1 | 40        |
| 54 | Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument<br>onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.                                                    | 5.1 | 39        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155. | 5.1 | 39        |
| 56 | Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.   | 4.4 | 39        |
| 57 | CHANGES IN THE PHYSICAL ENVIRONMENT OF THE INNER COMA OF 67P/CHURYUMOV–GERASIMENKO WITH DECREASING HELIOCENTRIC DISTANCE. Astronomical Journal, 2016, 152, 130.                                         | 4.7 | 36        |
| 58 | Novel reaction control techniques for redundant space manipulators: Theory and simulated microgravity tests. Acta Astronautica, 2011, 68, 1712-1721.                                                    | 3.2 | 34        |
| 59 | Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal<br>Astronomical Society, 2016, 462, S533-S546.                                                          | 4.4 | 34        |
| 60 | Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2016, 588, L3.                                                                 | 5.1 | 34        |
| 61 | Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development.<br>Astronomy and Astrophysics, 2015, 583, A11.                                                         | 5.1 | 33        |
| 62 | Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.                          | 4.4 | 33        |
| 63 | Meter-scale thermal contraction crack polygons on the nucleus of comet<br>67P/Churyumov-Gerasimenko. Icarus, 2018, 301, 173-188.                                                                        | 2.5 | 33        |
| 64 | Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model.<br>Planetary and Space Science, 2018, 164, 19-36.                                                       | 1.7 | 32        |
| 65 | Electroactive Elastomeric Actuators for the Implementation of a Deformable Spherical Rover.<br>IEEE/ASME Transactions on Mechatronics, 2011, 16, 50-57.                                                 | 5.8 | 30        |
| 66 | The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from<br>OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.        | 4.4 | 30        |
| 67 | Retrieving Scale on Monocular Visual Odometry Using Low-Resolution Range Sensors. IEEE<br>Transactions on Instrumentation and Measurement, 2020, 69, 5875-5889.                                         | 4.7 | 30        |
| 68 | A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.                                             | 5.1 | 29        |
| 69 | Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 187, 87-103.                                                                        | 2.5 | 27        |
| 70 | Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices<br>of the Royal Astronomical Society, 2016, 462, S352-S367.                                              | 4.4 | 27        |
| 71 | The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.                            | 5.1 | 27        |
| 72 | Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A14.                                                                                     | 5.1 | 26        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.                                                              | 5.1  | 26        |
| 74 | Decimetre-scaled spectrophotometric properties of the nucleus of comet<br>67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical<br>Society, 2016, 462, S287-S303.            | 4.4  | 26        |
| 75 | Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical<br>Society, 2017, 469, S582-S597.                                                                                    | 4.4  | 24        |
| 76 | Method for studying the effects of thermal deformations on optical systems for space application.<br>Applied Optics, 2011, 50, 2836.                                                                                 | 2.1  | 23        |
| 77 | Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.                                                                                            | 5.1  | 23        |
| 78 | Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the<br>OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462,<br>S57-S66. | 4.4  | 23        |
| 79 | Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly<br>Notices of the Royal Astronomical Society, 2016, 462, S573-S592.                                                       | 4.4  | 23        |
| 80 | Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S731-S740.                                                   | 4.4  | 23        |
| 81 | Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.                                                              | 5.1  | 22        |
| 82 | The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S550-S567.                                                    | 4.4  | 22        |
| 83 | A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.                                               | 4.4  | 22        |
| 84 | Bilobate comet morphology and internal structure controlled by shear deformation. Nature<br>Geoscience, 2019, 12, 157-162.                                                                                           | 12.9 | 22        |
| 85 | On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko.<br>Icarus, 2018, 311, 1-22.                                                                                             | 2.5  | 21        |
| 86 | Effect of Hypervelocity Impact on Microcellular Ceramic Foams from a Preceramic Polymer. Advanced<br>Engineering Materials, 2003, 5, 802-805.                                                                        | 3.5  | 20        |
| 87 | Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS<br>instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.                            | 4.4  | 20        |
| 88 | The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.                                                  | 4.4  | 20        |
| 89 | Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.                                                                                                                         | 4.7  | 20        |
| 90 | The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design,<br>Performances and Expected Results. Space Science Reviews, 2018, 214, 1.                                                | 8.1  | 19        |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.                                                                                           | 10.1 | 19        |
| 92  | Reaction torque control of redundant space robotic systems for orbital maintenance and simulated microgravity tests. Acta Astronautica, 2010, 67, 285-295.                                                  | 3.2  | 18        |
| 93  | Comparative study of water ice exposures on cometary nuclei using multispectral imaging data.<br>Monthly Notices of the Royal Astronomical Society, 2016, 462, S394-S414.                                   | 4.4  | 18        |
| 94  | Mars rovers localization by matching local horizon to surface digital elevation models. , 2017, , .                                                                                                         |      | 18        |
| 95  | Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A7.                                                            | 5.1  | 18        |
| 96  | Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S195-S203.                                             | 4.4  | 17        |
| 97  | Uncertainty comparison of three visual odometry systems in different operative conditions.<br>Measurement: Journal of the International Measurement Confederation, 2016, 78, 388-396.                       | 5.0  | 16        |
| 98  | The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.                     | 4.4  | 15        |
| 99  | An Experimental Comparison of ROS-compatible Stereo Visual SLAM Methods for Planetary Rovers. , 2018, , .                                                                                                   |      | 15        |
| 100 | Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution.<br>Astronomy and Astrophysics, 2018, 613, A36.                                                                  | 5.1  | 15        |
| 101 | Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.                                                    | 5.1  | 15        |
| 102 | Relocalization With Submaps: Multi-Session Mapping for Planetary Rovers Equipped With Stereo<br>Cameras. IEEE Robotics and Automation Letters, 2020, 5, 580-587.                                            | 5.1  | 15        |
| 103 | Towards the development of a cyber-physical measurement system (CPMS): case study of a bioinspired soft growing robot for remote measurement and monitoring applications. Acta IMEKO (2012), 2021, 10, 104. | 0.7  | 15        |
| 104 | VIS-NIR Imaging Spectroscopy of Mercury's Surface: SIMBIO-SYS/VIHI Experiment Onboard the BepiColombo Mission. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .                                | 6.3  | 14        |
| 105 | Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 590, A46.                                                                                   | 5.1  | 14        |
| 106 | ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA). Space Science Reviews, 2019, 215, 1.                                                                                       | 8.1  | 14        |
| 107 | The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. , 2014, , .                                                                            |      | 13        |
| 108 | Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.                                     | 4.4  | 13        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.                                                                                  | 5.1 | 13        |
| 110 | Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere<br>of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469,<br>S178-S185. | 4.4 | 12        |
| 111 | Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.                                                              | 4.4 | 12        |
| 112 | Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter. , 2018, , .                                                                                                                                         |     | 12        |
| 113 | Evaluation of 3D CNN Semantic Mapping for Rover Navigation. , 2020, , .                                                                                                                                              |     | 12        |
| 114 | Acceleration fields induced by hypervelocity impacts on spacecraft structures. International Journal of Impact Engineering, 2006, 33, 580-591.                                                                       | 5.0 | 11        |
| 115 | Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.                                                                                        | 5.1 | 11        |
| 116 | Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A115.                                                         | 5.1 | 11        |
| 117 | Mars and Moon exploration passing through the European Precision Landing GNC Test Facility. Acta<br>Astronautica, 2008, 63, 74-90.                                                                                   | 3.2 | 10        |
| 118 | Photometry of dust grains of comet 67P and connection with nucleus regions. Astronomy and Astrophysics, 2016, 588, A59.                                                                                              | 5.1 | 10        |
| 119 | Design and Validation of a Carbon-Fiber Collapsible Hinge for Space Applications: A Deployable Boom.<br>Journal of Mechanisms and Robotics, 2016, 8, .                                                               | 2.2 | 10        |
| 120 | ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction. Space Science Reviews, 2018, 214, 1.                                                                                            | 8.1 | 10        |
| 121 | Analysis of dynamic performances of hasi temperature sensor during the entry in the Titan atmosphere. Planetary and Space Science, 1998, 46, 1325-1332.                                                              | 1.7 | 9         |
| 122 | Comparison of visual odometry systems suitable for planetary exploration. , 2014, , .                                                                                                                                |     | 9         |
| 123 | The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. Measurement: Journal of the International Measurement Confederation, 2018, 122, 484-493.  | 5.0 | 9         |
| 124 | Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.                                                | 4.4 | 9         |
| 125 | Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.                  | 5.1 | 9         |
| 126 | Seasonal variations in source regions of the dust jets on comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A17.                                                                            | 5.1 | 9         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Rockyâ€Like Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research<br>Letters, 2019, 46, 14336-14346.                                                                            | 4.0 | 9         |
| 128 | Rolling dielectric elastomer actuator with bulged cylindrical shape. Smart Materials and Structures, 2010, 19, 127001.                                                                                            | 3.5 | 8         |
| 129 | Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.                                               | 5.1 | 8         |
| 130 | Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data. Planetary and Space Science, 2017, 143, 256-264.                                                                           | 1.7 | 8         |
| 131 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.                                      | 5.1 | 8         |
| 132 | Geomorphological and spectrophotometric analysis of Seth's circular niches on comet<br>67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society,<br>2017, 469, S238-S251. | 4.4 | 8         |
| 133 | MiniVO: Minimalistic Range Enhanced Monocular System for Scale Correct Pose Estimation. IEEE<br>Sensors Journal, 2020, 20, 11874-11886.                                                                           | 4.7 | 8         |
| 134 | Accuracy Analysis of a Pointing Mechanism for Communication Applications. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 3499-3509.                                                              | 4.7 | 7         |
| 135 | Uncertainty evaluation of a vision system for pose measurement of a spacecraft with fiducial markers. , 2015, , .                                                                                                 |     | 7         |
| 136 | SPARTANS - A cooperating spacecraft testbed for autonomous proximity operations experiments. , 2015, , .                                                                                                          |     | 7         |
| 137 | A comparison of monocular and stereo visual FastSLAM implementations. , 2016, , .                                                                                                                                 |     | 7         |
| 138 | Monocular visual odometry aided by a low resolution time of flight camera. , 2017, , .                                                                                                                            |     | 7         |
| 139 | A preliminary investigation into the design of pressure cushions and their potential applications for forearm robotic orthoses. BioMedical Engineering OnLine, 2017, 16, 54.                                      | 2.7 | 7         |
| 140 | Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.                                                                                                       | 5.1 | 7         |
| 141 | Robust Visual Localization for Hopping Rovers on Small Bodies. , 2018, , .                                                                                                                                        |     | 7         |
| 142 | The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.         | 4.4 | 7         |
| 143 | Experimental evaluation of a camera rig extrinsic calibration method based on retro-reflective<br>markers detection. Measurement: Journal of the International Measurement Confederation, 2019, 140,<br>47-55.    | 5.0 | 7         |
| 144 | Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A8.                                                                      | 5.1 | 7         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard<br>Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .      | 4.4 | 6         |
| 146 | Rosetta/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry. Astronomy and Astrophysics, 2019, 630, A9.                  | 5.1 | 6         |
| 147 | Lutetia surface reconstruction and uncertainty analysis. Planetary and Space Science, 2012, 71, 64-72.                                                                     | 1.7 | 5         |
| 148 | Korus â $\in$ " A drone project for visual and IR imaging. , 2017, , .                                                                                                     |     | 5         |
| 149 | Metrological Characterization of a Vision-Based System for Relative Pose Measurements with Fiducial<br>Marker Mapping for Spacecrafts. Robotics, 2018, 7, 43.              | 3.5 | 5         |
| 150 | Novel Automated Production System for the Footwear Industry. IFIP Advances in Information and Communication Technology, 2013, , 542-549.                                   | 0.7 | 4         |
| 151 | Camera Rig Extrinsic Calibration Using a Motion Capture System. , 2018, , .                                                                                                |     | 4         |
| 152 | Scientific objectives of JANUS Instrument onboard JUICE mission and key technical solutions for its Optical Head. , 2019, , .                                              |     | 4         |
| 153 | Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.                                           | 5.1 | 4         |
| 154 | Design of a user-friendly control system for planetary rovers with CPS feature. , 2021, , .                                                                                |     | 4         |
| 155 | Optical performance evaluation of the high spatial resolution imaging camera of BepiColombo space mission. Optics and Laser Technology, 2021, 141, 107172.                 | 4.6 | 4         |
| 156 | Viewpoint Selection for Rover Relative Pose Estimation Driven by Minimal Uncertainty Criteria. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.       | 4.7 | 4         |
| 157 | Calibration of a vision-based system for displacement measurement in planetary exploration space missions. Journal of Physics: Conference Series, 2010, 238, 012031.       | 0.4 | 3         |
| 158 | Development of long deployable dipole antennas for Sounder Radars in ThalesAleniaSpace-Italia. , 2013, , .                                                                 |     | 3         |
| 159 | Uncertainty analysis of a stereo system performing ego-motion measurements in a simulated planetary environment. Journal of Physics: Conference Series, 2013, 459, 012056. | 0.4 | 3         |
| 160 | The JANUS camera onboard JUICE mission for Jupiter system optical imaging. Proceedings of SPIE, 2014, ,                                                                    | 0.8 | 3         |
| 161 | Numerical study of lander effects on DREAMS scientific package measurements. , 2014, , .                                                                                   |     | 3         |
| 162 | MarsTEM: The temperature sensor of the DREAMS package onboard Exomars2016. , 2014, , .                                                                                     |     | 3         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Attitude Module characterization of the Satellite Formation Flight testbed. , 2014, , .                                                                                                          |     | 3         |
| 164 | Calibration of extrinsic parameters of a hybrid vision system for navigation comprising a very low resolution Time-of-Flight camera. , 2017, , .                                                 |     | 3         |
| 165 | Rover Relative Localization Testing in Martian Relevant Environment. , 2019, , .                                                                                                                 |     | 3         |
| 166 | Simulation Framework for Mobile Robots in Planetary-Like Environments. , 2020, , .                                                                                                               |     | 3         |
| 167 | Effect of rolling shutter on visual odometry systems suitable for planetary exploration. , 2016, , .                                                                                             |     | 2         |
| 168 | Instrument workstation for the EGSE of the Near Infrared Spectro-Photometer instrument (NISP) of the EUCLID mission. , 2016, , .                                                                 |     | 2         |
| 169 | Renovating Project Management: Knowledge Personalization and Sharing. Knowledge Management and<br>Organizational Learning, 2017, , 131-153.                                                      | 0.5 | 2         |
| 170 | Simulation of a sounding rocket flight's dynamic. , 2017, , .                                                                                                                                    |     | 2         |
| 171 | Spectrophotometric variegation of the layering in comet 67P/Churyumov-Gerasimenko as seen by OSIRIS. Astronomy and Astrophysics, 2019, 630, A16.                                                 | 5.1 | 2         |
| 172 | Occupancy grid mapping for rover navigation based on semantic segmentation. Acta IMEKO (2012), 2021, 10, 155.                                                                                    | 0.7 | 2         |
| 173 | Adaptive-randomised self-calibration of electro-mechanical shutters for space imaging. Mechanical Systems and Signal Processing, 2006, 20, 2305-2320.                                            | 8.0 | 1         |
| 174 | Observing Mercury: from Galileo to the stereo camera on the BepiColombo mission. Proceedings of the International Astronomical Union, 2010, 6, 213-218.                                          | 0.0 | 1         |
| 175 | A method for studying the effects of thermal deformations on optical systems for space application.<br>Proceedings of SPIE, 2010, , .                                                            | 0.8 | 1         |
| 176 | A preliminary optical design for the JANUS camera of ESA's space mission JUICE. , 2014, , .                                                                                                      |     | 1         |
| 177 | Position and orientation measurement of a fast moving multibody system in ground tests. , 2014, , .                                                                                              |     | 1         |
| 178 | Determination and uncertainty analysis of mercury libration using BepiColombo HRIC images. , 2014, , .                                                                                           |     | 1         |
| 179 | Optical flow sensor based localization system for a cooperating spacecraft testbed. , 2015, , .                                                                                                  |     | 1         |
| 180 | A sounding rocket as a test bench for cost effective measurements: Development of a sounding rocket demonstrator test bench for aerospace technologies and atmospheric measurements. , 2015, , . |     | 1         |

0

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Optical design and stray light analysis for the JANUS camera of the JUICE space mission. , 2015, , .                                                                                        |     | 1         |
| 182 | Multiphysics modelling of MarsTEM shield. , 2015, , .                                                                                                                                       |     | 1         |
| 183 | Visual odometry system performance for different landmark average distances. , 2016, , .                                                                                                    |     | 1         |
| 184 | Autonomous re-entry system technology demonstrator for sounding rockets: Development of an automated control system as recovery device for precise landing of sounding rockets. , 2016, , . |     | 1         |
| 185 | The ExoMars DREAMS scientific data archive. , 2016, , .                                                                                                                                     |     | 1         |
| 186 | Detailed design and first tests of the application software for the instrument control unit of Euclid-NISP. Proceedings of SPIE, 2016, , .                                                  | 0.8 | 1         |
| 187 | The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. , 2017, , .                                                      |     | 1         |
| 188 | From the editors of the special issue on selected methods and instrumentation of metrology for aerospace. IEEE Aerospace and Electronic Systems Magazine, 2018, 33, 4-5.                    | 1.3 | 1         |
| 189 | Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 2019, 630, A11.                                                                  | 5.1 | 1         |
| 190 | Laboratory characterization of HYPSOS, a novel 4D remote sensing instrument. , 2021, , .                                                                                                    |     | 1         |
| 191 | The international package for scientific experiments (IPSE) for Mars surveyor program. Advances in Space Research, 2001, 28, 1209-1218.                                                     | 2.6 | 0         |
| 192 | IPSE: The Italian package for scientific experiments on Mars. Planetary and Space Science, 2004, 52, 41-45.                                                                                 | 1.7 | 0         |
| 193 | VIS-NIR imaging spectroscopy of the Mercury's surface: SIMBIO-SYS/VIHI experiment onboard the Bepi<br>Colombo mission. , 2009, , .                                                          |     | 0         |
| 194 | Comparison between two modern uncertainty expression and propagation approaches. Journal of Physics: Conference Series, 2010, 238, 012033.                                                  | 0.4 | 0         |
| 195 | Effects of thermal deformations on the sensitivity of optical systems for space application. , 2010, , .                                                                                    |     | 0         |
| 196 | The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument. , 2014, , .                                                                                      |     | 0         |
| 197 | Data handling equipment for payload sub-systems. , 2014, , .                                                                                                                                |     | 0         |
|     |                                                                                                                                                                                             |     |           |

198 The EGSE for the DREAMS payload onboard the ExoMars 2016 space mission. , 2014, , .

| #   | Article                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | MarsTEM field test in Mars analog environment. , 2015, , .                                                                                          |     | 0         |
| 200 | Development of a camera-aided optical mouse sensors based localization system for a free floating planar robot. , 2016, , .                         |     | 0         |
| 201 | Improving a sounding rocket technology demonstrator for experimental measurements. , 2016, , .                                                      |     | 0         |
| 202 | Trade-off between TMA and RC configurations for JANUS camera. Proceedings of SPIE, 2016, , .                                                        | 0.8 | 0         |
| 203 | EGSE customization for the Euclid NISP Instrument AIV/AIT activities. Proceedings of SPIE, 2016, , .                                                | 0.8 | 0         |
| 204 | Stereo visual odometry failure recovery using monocular techniques. , 2017, , .                                                                     |     | 0         |
| 205 | MarsTEM sensor simulations in Martian dust environment. , 2017, , .                                                                                 |     | 0         |
| 206 | MarsTEM sensor simulations in Martian dust environment. Measurement: Journal of the International<br>Measurement Confederation, 2018, 122, 453-458. | 5.0 | 0         |
| 207 | Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs<br>( <i>Corrigendum</i> ). Astronomy and Astrophysics, 2018, 614, C2. | 5.1 | 0         |
| 208 | Uncertainty evaluation of vision-based approaches for distance measurement of a tether tip-mass. , 2019, , .                                        |     | 0         |
| 209 | Analysis of Ganymede rotational state using JANUS telescope. , 2019, , .                                                                            |     | 0         |
| 210 | Simulation of Images and Digital Terrain Models for the Mission BepiColombo. Aerotecnica Missili & Spazio, 2021, 100, 161-169.                      | 0.9 | 0         |
| 211 | Effects of thermal deformation on optical instruments for space application. , 2017, , .                                                            |     | 0         |
| 212 | A novel optical design for the stereo channel of the imaging system SIMBIOSYS for the BepiColombo ESA mission. , 2017, , .                          |     | 0         |
| 213 | Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission. , 2017, , .                      |     | 0         |
| 214 | Preliminary optical design of the stereo channel of the imaging system simbiosys for the BepiColombo ESA mission. , 2017, , .                       |     | 0         |
| 215 | Position Measurement and Uncertainty Analysis for the Shutter Mechanism Mounted on the Rosetta Mission. , 2018, , .                                 |     | 0         |
| 216 | A Multimission Method for the Reconstruction of Gamma-ray Events on Silicon Tracker Pair<br>Telescopes. Astrophysical Journal, 2022, 928, 141.      | 4.5 | 0         |