Zafar Hussain Ibupoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 12672-12682.	7.1	30
2	Polyvinyl fibers as outperform candidature in the solid polymer electrolytes. Journal of Industrial Textiles, 2022, 51, 6983S-6995S.	2.4	3
3	Efficient and Stable Co3O4/ZnO Nanocomposite for Photochemical Water Splitting. Journal of Cluster Science, 2022, 33, 387-394.	3.3	3
4	The Crystal Disorder into ZnO with Addition of Bromine and It's Outperform Role in the Photodegradation of Methylene Blue. Journal of Cluster Science, 2022, 33, 281-291.	3.3	2
5	Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. Journal of Cluster Science, 2022, 33, 1445-1456.	3.3	14
6	Simultaneous doping of sulfur and chloride ions into ZnO nanorods for improved photocatalytic properties towards degradation of methylene blue. Ceramics International, 2022, 48, 5535-5545.	4.8	25
7	An efficient palladium oxide nanoparticles@Co3O4 nanocomposite with low chemisorbed species for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 3834-3845.	7.1	18
8	NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 6650-6665.	7.1	30
9	Pd-Co3O4-based nanostructures for the development of enzyme-free glucose sensor. Bulletin of Materials Science, 2022, 45, 1.	1.7	6
10	Facile deposition of palladium oxide (PdO) nanoparticles on CoNi ₂ S ₄ microstructures towards enhanced oxygen evolution reaction. Nanotechnology, 2022, 33, 275402.	2.6	8
11	The fast nucleation/growth of Co ₃ O ₄ nanowires on cotton silk: the facile development of a potentiometric uric acid biosensor. RSC Advances, 2022, 12, 18321-18332.	3.6	4
12	Silky Co ₃ O ₄ nanostructures for the selective and sensitive enzyme free sensing of uric acid. RSC Advances, 2021, 11, 5156-5162.	3.6	12
13	Synthesis of Sheet Like Nanostructures of NiO Using Potassium Dichromate as Surface Modifying Agent for the Sensitive and Selective Determination of Amlodipine Besylate (ADB) Drug. Electroanalysis, 2021, 33, 1121-1128.	2.9	4
14	Two step synthesis of TiO2–Co3O4 composite for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9110-9122.	7.1	25
15	Chemically Coupled Multiwall Carbon Nanotubes with Leaf-Like Nanostructures of NiO for Sensitive and Selective Determination of Uric Acid. Journal of Electronic Materials, 2021, 50, 2852-2859.	2.2	1
16	Mixed MoS ₂ /MoO ₃ Nanostructures for Hydrogen Evolution Reaction. Journal of Nanoscience and Nanotechnology, 2021, 21, 2500-2510.	0.9	2
17	MoSx–Co3O4 Nanocomposite for Selective Determination of Ascorbic Acid. Journal of Nanoscience and Nanotechnology, 2021, 21, 2595-2603.	0.9	0
18	An Efficient and Functional Fe3O4/Co3O4 Composite for Oxygen Evolution Reaction. Journal of Nanoscience and Nanotechnology, 2021, 21, 2675-2680.	0.9	3

ZAFAR HUSSAIN IBUPOTO

#	Article	IF	CITATIONS
19	Polyaniline as a sacrificing template for the synthesis of controlled Co3O4 nanoparticles for the sensitive and selective detection of methotrexate (MTX). Journal of Materials Science: Materials in Electronics, 2021, 32, 15594-15604.	2.2	1
20	Synthesis of composite material of cobalt oxide (Co3O4) with hydroxide functionalized multi-walled carbon nanotubes (MWCNTs) for electrochemical determination of uric acid. Journal of Materials Science: Materials in Electronics, 2021, 32, 20047-20057.	2.2	0
21	Flower-like CuO/polyaniline composite for electrochemical determination of hydrochlorothiazide. Bulletin of Materials Science, 2021, 44, 1.	1.7	2
22	Enzymes and phytochemicals from neem extract robustly tuned the photocatalytic activity of ZnO for the degradation of malachite green (MG) in aqueous media. Research on Chemical Intermediates, 2021, 47, 1581-1599.	2.7	16
23	Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 2021, 398, 139338.	5.2	30
24	The Enzyme Free Uric Acid Sensor Based on Iron Doped CuO Nanostructures for the Determination of Uric Acid from Commercial Seafood. Journal of Electronic Materials, 2020, 49, 6123-6129.	2.2	2
25	Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation. Tungsten, 2020, 2, 403-410.	4.8	15
26	Nickel–cobalt bimetallic sulfide NiCo ₂ S ₄ nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Advances, 2020, 10, 22196-22203.	3.6	14
27	Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media. Electroanalysis, 2020, 32, 1052-1059.	2.9	21
28	Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 13805-13813.	7.1	44
29	Facile doping of nickel into Co ₃ O ₄ nanostructures to make them efficient for catalyzing the oxygen evolution reaction. RSC Advances, 2020, 10, 12962-12969.	3.6	20
30	A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Analytical Methods, 2019, 11, 3578-3583.	2.7	39
31	An efficient bifunctional electrocatalyst based on a nickel iron layered double hydroxide functionalized Co ₃ O ₄ core shell structure in alkaline media. Catalysis Science and Technology, 2019, 9, 2879-2887.	4.1	27
32	A practical non-enzymatic urea sensor based on NiCo ₂ O ₄ nanoneedles. RSC Advances, 2019, 9, 14443-14451.	3.6	50
33	Co3O4/ NiO bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2019, 306, 9-17.	5.2	77
34	Facile Nonâ€enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. Electroanalysis, 2019, 31, 1296-1303.	2.9	32
35	Facile efficient earth abundant NiO/C composite electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 5701-5710.	3.6	21
36	An advanced and efficient Co ₃ O ₄ /C nanocomposite for the oxygen evolution reaction in alkaline media. RSC Advances, 2019, 9, 34136-34143.	3.6	4

#	Article	IF	CITATIONS
37	Efficient tri-metallic oxides NiCo ₂ O ₄ /CuO for the oxygen evolution reaction. RSC Advances, 2019, 9, 42387-42394.	3.6	9
38	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	14.9	83
39	The chemically reduced CuO–Co ₃ O ₄ composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media. Catalysis Science and Technology, 2019, 9, 6274-6284.	4.1	24
40	Functional CuO Microstructures for Glucose Sensing. Journal of Electronic Materials, 2018, 47, 1519-1525.	2.2	4
41	Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor. Materials, 2018, 11, 1378.	2.9	8
42	An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures. Microsystem Technologies, 2017, 23, 1229-1235.	2.0	16
43	Rice-like CuO nanostructures for sensitive electrochemical sensing of hydrazine. Microsystem Technologies, 2017, 23, 731-738.	2.0	13
44	Synthesis of silica nanoparticles doped with [Ru(bpy)3]2+ and decorated with silver nanoclusters for the ratiometric photoluminescent determination and intracellular imaging of Cu(II) ions. Mikrochimica Acta, 2017, 184, 2325-2331.	5.0	12
45	Ultraâ€sensitive Amperometric Hydrazine Sensing via Dimethyl Glyoxomat Derived NiO Nanostructures. Electroanalysis, 2017, 29, 2803-2809.	2.9	6
46	Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics. Advanced Energy Materials, 2017, 7, 1700706.	19.5	108
47	Electrochemical Water Splitting: Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics (Adv. Energy Mater. 23/2017). Advanced Energy Materials, 2017, 7, 1770138.	19.5	5
48	Selective and Sensitive Nitrite Sensor Based on Glassy Carbon Electrode Modified by Silver Nanochains. Electroanalysis, 2017, 29, 415-422.	2.9	10
49	The Synthesis of Functional Cobalt Oxide Nanostructures, and their Sensitive Glucose Sensing Application. Electroanalysis, 2017, 29, 213-222.	2.9	11
50	Synthesis of Assembled ZnO Nanoparticles Using Dimethyl Glyxomate and Their Sensitive Determination Application of Dopamine. Sensor Letters, 2017, 15, 289-295.	0.4	2
51	The Development of Sensitive and Selective Dopamine Biosensor Based on Cu-Doped Cobalt Oxide Nanostructures. Sensor Letters, 2017, 15, 205-210.	0.4	0
52	Synthesis of ZnO Nanostructures, Their Characterization and Sensitive Sensing of Dopamine. Sensor Letters, 2017, 15, 419-423.	0.4	0
53	A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors, 2016, 16, 1878.	3.8	23
54	Glutaric Acid Assisted Fabrication of CuO Nanostructures and their Application in Development of Highly Sensitive Electrochemical Sensor System for Carbamates. Electroanalysis, 2016, 28, 1634-1640.	2.9	11

ZAFAR HUSSAIN IBUPOTO

#	Article	IF	CITATIONS
55	Simpler and highly sensitive enzyme-free sensing of urea via NiO nanostructures modified electrode. RSC Advances, 2016, 6, 39001-39006.	3.6	49
56	Comparision between different metal oxide nanostructures and nanocomposites for sensing, energy generation, and energy harvesting. , 2016, , .		0
57	Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sensors and Actuators B: Chemical, 2016, 233, 230-236.	7.8	44
58	Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine. Journal of Electronic Materials, 2016, 45, 3695-3701.	2.2	12
59	Highly sensitive shape dependent electro-catalysis of TNT molecules using Pd and Pd–Pt alloy based nanostructures. RSC Advances, 2016, 6, 44955-44962.	3.6	9
60	Highly sensitive determination of atropine using cobalt oxide nanostructures: Influence of functional groups on the signal sensitivity. Analytica Chimica Acta, 2016, 948, 30-39.	5.4	18
61	Practice of diclofenac sodium for the hydrothermal growth of NiO nanostructures and their application for enzyme free glucose biosensor. Microsystem Technologies, 2016, 22, 2549-2557.	2.0	10
62	Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide. Electrochimica Acta, 2016, 190, 972-979.	5.2	48
63	The Synthesis of New Nanostructures of CuO Using Ascorbic Acid as Growth Directing Agent and Their Sensitive Electrochemical Detection of Hydrazine. Sensor Letters, 2016, 14, 611-615.	0.4	7
64	Fe-Doped Cobalt Oxide Nanostructures for the Development of Sensitive Dopamine Biosensor. Sensor Letters, 2016, 14, 764-768.	0.4	2
65	Synthesis of Novel Nanostructures of CuO, Their Characterization and Potential Applications for the Amperometric Detection of Dopamine. Sensor Letters, 2016, 14, 1161-1167.	0.4	4
66	An Amperometric Indirect Determination of Heavy Metal Ions Through Inhibition of Glucose Oxidase Immobilized on Cobalt Oxide Nanostructures. Sensor Letters, 2016, 14, 1178-1186.	0.4	8
67	Glycine-assisted preparation of Co3O4 nanoflakes with enhanced performance for non-enzymatic glucose sensing. Materials Express, 2015, 5, 437-444.	0.5	18
68	A highly selective and sensitive electrochemical determination of melamine based on succinic acid functionalized copper oxide nanostructures. RSC Advances, 2015, 5, 105090-105097.	3.6	23
69	Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sensors and Actuators B: Chemical, 2015, 209, 966-974.	7.8	99
70	Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Advances, 2015, 5, 18773-18781.	3.6	62
71	Supramolecules-assisted ZnO nanostructures growth and their UV photodetector application. Solid State Sciences, 2015, 41, 14-18.	3.2	9
72	Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor. Materials, 2015, 8, 149-161.	2.9	18

#	Article	IF	CITATIONS
73	Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Materials Science in Semiconductor Processing, 2015, 34, 373-381.	4.0	50
74	Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. Journal of Solid State Electrochemistry, 2015, 19, 913-922.	2.5	28
75	Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures, grown via aqueous chemical synthesis. Vacuum, 2015, 116, 21-26.	3.5	22
76	Label-free fluorescence turn-on detection of microRNA based on duplex-specific nuclease and a perylene probe. Analytica Chimica Acta, 2015, 895, 89-94.	5.4	20
77	Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose. Journal of Electronic Materials, 2015, 44, 3724-3732.	2.2	33
78	Synthesis of Three Dimensional Nickel Cobalt Oxide Nanoneedles on Nickel Foam, Their Characterization and Glucose Sensing Application. Sensors, 2014, 14, 5415-5425.	3.8	49
79	Incorporating β-Cyclodextrin with ZnO Nanorods: A Potentiometric Strategy for Selectivity and Detection of Dopamine. Sensors, 2014, 14, 1654-1664.	3.8	14
80	Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and Their Luminescence Study. Materials, 2014, 7, 430-440.	2.9	15
81	ZnO Based Potentiometric and Amperometric Nanosensors. Journal of Nanoscience and Nanotechnology, 2014, 14, 6497-6508.	0.9	16
82	The improved piezoelectric properties of ZnO nanorods with oxygen plasma treatment on the single layer graphene coated polymer substrate. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 455-459.	1.8	26
83	Effect of Urea on the Morphology of Co ₃ O ₄ Nanostructures and Their Application for Potentiometric Glucose Biosensor. Electroanalysis, 2014, 26, 1773-1781.	2.9	52
84	Fabrication of Sensitive Potentiometric Cholesterol Biosensor Based on Co ₃ O ₄ Interconnected Nanowires. Electroanalysis, 2014, 26, 1928-1934.	2.9	11
85	Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements. Sensors, 2014, 14, 8605-8632.	3.8	27
86	Effect of anions on the morphology of Co3O4 nanostructures grown by hydrothermal method and their pH sensing application. Journal of Electroanalytical Chemistry, 2014, 717-718, 78-82.	3.8	21
87	Analysis of junction properties of gold–zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile. Journal of Materials Science, 2014, 49, 3434-3441.	3.7	22
88	Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode. Sensors and Actuators B: Chemical, 2014, 203, 543-549.	7.8	55
89	Photocatalytic properties of different morphologies of CuO for the degradation of Congo red organic dye. Ceramics International, 2014, 40, 11311-11317.	4.8	80
90	Synthesis of CuO/ZnO Composite Nanostructures, Their Optical Characterization and Valence Band Offset Determination by X-Ray Photoelectron Spectroscopy. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 348-356.	0.5	12

ZAFAR HUSSAIN IBUPOTO

#	Article	IF	CITATIONS
91	Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications. Sensors, 2013, 13, 7926-7938.	3.8	104
92	Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures. Materials Letters, 2013, 108, 149-152.	2.6	59
93	The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence. Nanoscale Research Letters, 2013, 8, 320.	5.7	70
94	Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric. Semiconductor Science and Technology, 2013, 28, 125006.	2.0	19
95	Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles. Materials, 2013, 6, 3584-3597.	2.9	93
96	Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer. Materials, 2013, 6, 4361-4374.	2.9	45
97	A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes. Sensors, 2013, 13, 1984-1997.	3.8	42
98	Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires. Nanomaterials, 2013, 3, 564-571.	4.1	30
99	Iron (III) Ion Sensor Based on the Seedless Grown ZnO Nanorods in 3 Dimensions Using Nickel Foam Substrate. Journal of Sensors, 2013, 2013, 1-7.	1.1	3
100	Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods. Sensors, 2012, 12, 15063-15077.	3.8	60
101	Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase. Sensors, 2012, 12, 2456-2466.	3.8	74
102	A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase. Sensors, 2012, 12, 2787-2797.	3.8	64
103	Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures. Sensors, 2012, 12, 15424-15437.	3.8	32
104	Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Applied Physics Letters, 2012, 101, .	3.3	119
105	Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin. Lasers in Medical Science, 2012, 27, 607-614.	2.1	21
106	Iron Ion Sensor Based on Functionalized ZnO Nanorods. Electroanalysis, 2012, 24, 521-528.	2.9	12
107	ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin. Biosensors, 2011, 1, 153-163.	4.7	36
108	Selective determination of urea using urease immobilized on ZnO nanowires. Sensors and Actuators B: Chemical, 2011, 160, 637-643.	7.8	78

7

#	Article	IF	CITATIONS
109	Facile Co 3 O 4 nanoparticles deposited on polyvinylpyrrolidine for efficient water oxidation in alkaline media. Journal of the Chinese Chemical Society, 0, , .	1.4	0
110	Role of cobalt precursors in the synthesis of <scp> Co ₃ O ₄ </scp> hierarchical nanostructures toward the development of cobaltâ€based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media. Journal of the Chinese Chemical Society, 0, , .	1.4	1
111	Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	0