Tarek Moustafa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5628616/publications.pdf Version: 2024-02-01

TADEK MOUSTAEA

#	Article	IF	CITATIONS
1	Characterization of HULC, a Novel Gene With Striking Up-Regulation in Hepatocellular Carcinoma, as Noncoding RNA. Gastroenterology, 2007, 132, 330-342.	1.3	725
2	ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature Medicine, 2011, 17, 1076-1085.	30.7	612
3	A New Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary Fibrosis. American Journal of Pathology, 2007, 171, 525-536.	3.8	293
4	Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTα-OSTβ in cholestasis in humans and rodents. American Journal of Physiology - Renal Physiology, 2006, 290, G1124-G1130.	3.4	255
5	Bile Acids as Regulators of Hepatic Lipid and Glucose Metabolism. Digestive Diseases, 2010, 28, 220-224.	1.9	254
6	Selective Activation of Nuclear Bile Acid Receptor FXR in the Intestine Protects Mice Against Cholestasis. Gastroenterology, 2012, 142, 355-365.e4.	1.3	243
7	Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan. Cell Metabolism, 2014, 19, 431-444.	16.2	221
8	Acetylation dynamics and stoichiometry in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Systems Biology, 2014, 10, 716.	7.2	220
9	The gut bacterium <i>Extibacter muris</i> produces secondary bile acids and influences liver physiology in gnotobiotic mice. Gut Microbes, 2021, 13, 1-21.	9.8	161
10	Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-1±/1² in the adaptive response to bile acids. American Journal of Physiology - Renal Physiology, 2006, 290, G923-G932.	3.4	154
11	Farnesoid X Receptor Critically Determines the Fibrotic Response in Mice but Is Expressed to a Low Extent in Human Hepatic Stellate Cells and Periductal Myofibroblasts. American Journal of Pathology, 2009, 175, 2392-2405.	3.8	154
12	PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene, 2015, 34, 1044-1050.	5.9	154
13	Alterations in Lipid Metabolism Mediate Inflammation, Fibrosis, and Proliferation in a Mouse Model of Chronic Cholestatic Liver Injury. Gastroenterology, 2012, 142, 140-151.e12.	1.3	139
14	Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2â''/â' mice. Hepatology, 2009, 49, 1972-1981.	7.3	135
15	Analysis of acetylation stoichiometry suggests that <scp>SIRT</scp> 3 repairs nonenzymatic acetylation lesions. EMBO Journal, 2015, 34, 2620-2632.	7.8	133
16	Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology, 2013, 58, 2056-2069.	7.3	130
17	Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wiener Medizinische Wochenschrift, 2008, 158, 542-548.	1.1	102
18	TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0120250.	2.5	93

TAREK MOUSTAFA

#	Article	IF	CITATIONS
19	Differential effects of norUDCA and UDCA in obstructive cholestasis in mice. Journal of Hepatology, 2013, 58, 1201-1208.	3.7	84
20	Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. Journal of Lipid Research, 2014, 55, 2229-2241.	4.2	57
21	Validated Comprehensive Analytical Method for Quantification of Coenzyme A Activated Compounds in Biological Tissues by Online Solid-Phase Extraction LC/MS/MS. Analytical Chemistry, 2008, 80, 5736-5742.	6.5	51
22	Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 588-594.	2.4	50
23	Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover. Journal of Biological Chemistry, 2016, 291, 17977-17987.	3.4	40
24	The role of osteopontin and tumor necrosis factor alpha receptor-1 in xenobiotic-induced cholangitis and biliary fibrosis in mice. Laboratory Investigation, 2010, 90, 844-852.	3.7	38
25	Potential of <i>nor</i> -Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders. Digestive Diseases, 2015, 33, 433-439.	1.9	38
26	Primary sclerosing cholangitisthe arteriosclerosis of the bile duct?. Lipids in Health and Disease, 2007, 6, 3.	3.0	30
27	New Insights into Autoimmune Cholangitis through Animal Models. Digestive Diseases, 2010, 28, 99-104.	1.9	28
28	G0/G1 Switch Gene 2 Regulates Cardiac Lipolysis. Journal of Biological Chemistry, 2015, 290, 26141-26150.	3.4	28
29	Primary Sclerosing Cholangitis: New Approaches to Diagnosis, Surveillance and Treatment. Digestive Diseases, 2012, 30, 39-47.	1.9	26
30	Targeting Nuclear Bile Acid Receptors for Liver Disease. Digestive Diseases, 2011, 29, 98-102.	1.9	24
31	Role of hepatic phospholipids in development of liver injury in <i>Mdr2</i> (<i>Abcb4</i>) knockout mice. Liver International, 2008, 28, 948-958.	3.9	23
32	98 DIFFERENTIAL EFFECTS OF NORUDCA AND UDCA IN THE TREATMENT OF FATTY LIVER AND ARTERIOSCLEROSIS IN WESTERN CHOW-FED APOE KNOCK OUT MICE. Journal of Hepatology, 2008, 48, S42.	3.7	7
33	Secondary (iso)BAs cooperate with endogenous ligands to activate FXR under physiological and pathological conditions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166153.	3.8	5
34	125 SIDE CHAIN MODIFIED BILE ACIDS MODULATE ENDOPLASMIC RETICULUM STRESS IN MDR2â^'/â^' MICE IN VIVO AND BILE DUCT EPITHELIAL CELLS IN VITRO. Journal of Hepatology, 2008, 48, S54-S55.	3.7	3
35	[48] RETENTION OF TOXIC BILE ACIDS ACTIVATE THE MTOR, P70S6K/RPS6 SIGNALING PATHWAY IN MOUSE MODELS OF CHOLESTATIC LIVER INJURY. Journal of Hepatology, 2007, 46, S23.	3.7	1
36	62 Common bile-duct-ligation of FXR knockout mice results in severe hepatic steatosis due to enhancement in lipogenic gene expression. Journal of Hepatology, 2006, 44, S28.	3.7	0

TAREK MOUSTAFA

#	Article	IF	CITATIONS
37	94 Transcriptional profiling of MDR2 knockout (MDR2â^'/â^') mice treated with NOR-UDCA reveals global anti-inflammatory and anti-fibrotic effects. Journal of Hepatology, 2006, 44, S42.	3.7	0
38	320 3.5-Diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding induces cholestasis, chronic inflammatory bile duct damage and biliary fibrosis in mice. Journal of Hepatology, 2006, 44, S123-S124.	3.7	0
39	321 Role of nuclear bile acid receptor FXR in regulation of bile acid detoxification and organic solute transporter (OST-1±/1²) expression in bile acid-fed mice. Journal of Hepatology, 2006, 44, S124.	3.7	Ο
40	[5] ABSENCE OF FXR PROTECTS MICE FROM BILE-INFARCTS IN BILIARY OBSTRUCTION BY REDUCTION OF BILE ACID-INDEPENDENT BILE FLOW: IMPLICATIONS FOR TARGETING FXR IN TREATMENT OF CHOLESTASIS?. Journal of Hepatology, 2007, 46, S5.	3.7	0
41	[307] TNFo AND LPS BUT NOT BILE ACIDS PLAY A KEY ROLE IN THE INDUCTION OF REACTIVE PHENOTYPE IN BILE DUCT EPITHELIAL CELLS IN VITRO. Journal of Hepatology, 2007, 46, S121.	3.7	Ο
42	Inhibition of Ileal Bile Acid Transport is Protective Against Cholestatic Liver Injury in <i>Cyp2c70</i> ^{â€∲â€} Mice with Humanized Bile Acid Composition. FASEB Journal, 2022, 36, .	0.5	0