
Lucas Pelkmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5628344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the neurogenic niche in the aging dentate gyrus using iterative immunofluorescence imaging. ELife, 2022, 11, .	2.8	14
2	Non-specific adhesive forces between filaments and membraneless organelles. Nature Physics, 2022, 18, 571-578.	6.5	41
3	Feedback from nuclear RNA on transcription promotes robust RNA concentration homeostasis in human cells. Cell Systems, 2022, 13, 454-470.e15.	2.9	25
4	Mechanisms of cellular mRNA transcript homeostasis. Trends in Cell Biology, 2022, 32, 655-668.	3.6	27
5	Multimodal perception links cellular state to decision-making in single cells. Science, 2022, 377, 642-648.	6.0	35
6	The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell, 2021, 39, 288-293.	7.7	71
7	High content genome-wide siRNA screen to investigate the coordination of cell size and RNA production. Scientific Data, 2021, 8, 162.	2.4	9
8	<scp>KCML</scp> : a machineâ€learning framework for inference of multiâ€scale gene functions from genetic perturbation screens. Molecular Systems Biology, 2020, 16, e9083.	3.2	11
9	Liquid droplets in the skin. Science, 2020, 367, 1193-1194.	6.0	5
10	SCIM: universal single-cell matching with unpaired feature sets. Bioinformatics, 2020, 36, i919-i927.	1.8	37
11	Largeâ€scale imageâ€based profiling of singleâ€cell phenotypes in arrayed CRISPRâ€Cas9 gene perturbation screens. Molecular Systems Biology, 2018, 14, e8064.	3.2	56
12	A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells. Molecular Cell, 2018, 72, 1035-1049.e5.	4.5	93
13	Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells. Cell Systems, 2018, 7, 398-411.e6.	2.9	24
14	Kinase-controlled phase transition of membraneless organelles in mitosis. Nature, 2018, 559, 211-216.	13.7	296
15	Multiplexed protein maps link subcellular organization to cellular states. Science, 2018, 361, .	6.0	350
16	Hypertonic Stress Causes Cytoplasmic Translocation of Neuronal, but Not Astrocytic, FUS due to Impaired Transportin Function. Cell Reports, 2018, 24, 987-1000.e7.	2.9	49
17	Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. Journal of Biological Chemistry, 2017, 292, 8356-8368.	1.6	19
18	A Systems Survey of Progressive Host-Cell Reorganization during Rotavirus Infection. Cell Host and Microbe, 2016, 20, 107-120.	5.1	29

LUCAS PELKMANS

#	Article	IF	CITATIONS
19	Post-transcriptional control of executioner caspases by RNA-binding proteins. Genes and Development, 2016, 30, 2213-2225.	2.7	15
20	Passive Noise Filtering by Cellular Compartmentalization. Cell, 2016, 164, 1151-1161.	13.5	100
21	Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature, 2015, 523, 88-91.	13.7	88
22	Control of Transcript Variability in Single Mammalian Cells. Cell, 2015, 163, 1596-1610.	13.5	332
23	Wnt directs the endosomal flux of <scp>LDL</scp> â€derived cholesterol and lipid droplet homeostasis. EMBO Reports, 2015, 16, 741-752.	2.0	43
24	Computer vision for image-based transcriptomics. Methods, 2015, 85, 44-53.	1.9	33
25	Trajectories of cell-cycle progression from fixed cell populations. Nature Methods, 2015, 12, 951-954.	9.0	97
26	Single-cell and multivariate approaches in genetic perturbation screens. Nature Reviews Genetics, 2015, 16, 18-32.	7.7	80
27	Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. PLoS Pathogens, 2014, 10, e1004502.	2.1	338
28	Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses. PLoS Pathogens, 2014, 10, e1004162.	2.1	135
29	A Hierarchical Map of Regulatory Genetic Interactions in Membrane Trafficking. Cell, 2014, 157, 1473-1487.	13.5	93
30	Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nature Methods, 2013, 10, 1127-1133.	9.0	253
31	Singleâ€cell analysis of population context advances RNAi screening at multiple levels. Molecular Systems Biology, 2012, 8, 579.	3.2	153
32	Using Cell-to-Cell Variability—A New Era in Molecular Biology. Science, 2012, 336, 425-426.	6.0	153
33	CellClassifier: supervised learning of cellular phenotypes. Bioinformatics, 2009, 25, 3028-3030.	1.8	81
34	Population context determines cell-to-cell variability in endocytosis and virus infection. Nature, 2009, 461, 520-523.	13.7	371
35	Lessons from genetics: interpreting complex phenotypes in RNAi screens. Current Opinion in Cell Biology, 2008, 20, 483-489.	2.6	29
36	Protein Kinases: Starting a Molecular Systems View of Endocytosis. Annual Review of Cell and Developmental Biology, 2008, 24, 501-523.	4.0	38

LUCAS PELKMANS

#	Article	IF	CITATIONS
37	Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature, 2005, 436, 78-86.	13.7	580
38	Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature, 2005, 436, 128-133.	13.7	312
39	Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 295-304.	1.9	154
40	Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Current Opinion in Microbiology, 2005, 8, 331-337.	2.3	37
41	Caveolin-Stabilized Membrane Domains as Multifunctional Transport and Sorting Devices in Endocytic Membrane Traffic. Cell, 2004, 118, 767-780.	13.5	470
42	Insider information: what viruses tell us about endocytosis. Current Opinion in Cell Biology, 2003, 15, 414-422.	2.6	312
43	Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae. Science, 2002, 296, 535-539.	6.0	648
44	Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biology, 2001, 3, 473-483.	4.6	1,158