Michael B Major

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627793/publications.pdf

Version: 2024-02-01

71 papers 4,495 citations

33 h-index 110387 64 g-index

79 all docs

79 docs citations

79 times ranked 8084 citing authors

#	Article	IF	CITATIONS
1	Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nature Communications, 2022, 13, 136.	12.8	39
2	Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice. Journal of Biological Chemistry, 2022, 298, 101723.	3.4	5
3	Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1 $\hat{1}^3$ 3 in WNT signaling. Journal of Biological Chemistry, 2022, 298, 101986.	3.4	5
4	TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene, 2022, 41, 3423-3432.	5.9	7
5	TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47. Cell Reports, 2021, 34, 108743.	6.4	14
6	The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Molecular Biology of the Cell, 2021, 32, 314-330.	2.1	21
7	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	6.4	109
8	Visualizing an Allosteric Intermediate Using CuAAC Stabilization of an NMR Mixed Labeled Dimer. ACS Chemical Biology, 2021, 16, 2766-2775.	3.4	4
9	The MyMOMA domain of MYO19 encodes for distinct Miroâ€dependent and Miroâ€independent mechanisms of interaction with mitochondrial membranes. Cytoskeleton, 2020, 77, 149-166.	2.0	28
10	A Circle RNA Regulatory Axis Promotes Lung Squamous Metastasis via CDR1-Mediated Regulation of Golgi Trafficking. Cancer Research, 2020, 80, 4972-4985.	0.9	23
11	PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Scientific Reports, 2020, 10, 15826.	3.3	6
12	Loss of SWI/SNF Chromatin Remodeling Alters NRF2 Signaling in Non–Small Cell Lung Carcinoma. Molecular Cancer Research, 2020, 18, 1777-1788.	3.4	24
13	Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. Journal of Cell Science, 2020, 133, .	2.0	17
14	A conditional mouse expressing an activating mutation in <scp><i>NRF2</i></scp> displays hyperplasia of the upper gastrointestinal tract and decreased white adipose tissue. Journal of Pathology, 2020, 252, 125-137.	4.5	16
15	In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biology, 2020, 18, e3000975.	5.6	7
16	The whole-genome landscape of Burkitt lymphoma subtypes. Blood, 2019, 134, 1598-1607.	1.4	113
17	Positive Cooperativity in Substrate Binding by Human Thymidylate Synthase. Biophysical Journal, 2019, 117, 1074-1084.	0.5	11
18	Novel inhibitors of leukocyte transendothelial migration. Bioorganic Chemistry, 2019, 92, 103250.	4.1	31

#	Article	IF	Citations
19	NRF2 Activation in Cancer: From DNA to Protein. Cancer Research, 2019, 79, 889-898.	0.9	140
20	WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Reports, 2019, 26, 79-93.e8.	6.4	68
21	Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus. Journal of Biological Chemistry, 2019, 294, 327-340.	3.4	57
22	Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition. Clinical Cancer Research, 2018, 24, 1932-1943.	7.0	51
23	Computerâ€Aided Design and Synthesis of 1â€[4â€[(3,4â€Dihydroxybenzylidene)amino]phenyl}â€5â€oxopyrrolidineâ€3â€carboxylic Acid as an Nrf2 Enhand ChemPlusChem, 2018, 83, 320-333.	C 21. 8	9
24	Computer-Aided Design and Synthesis of 1-{4-[(3,4-Dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic Acid as an Nrf2 Enhancer. ChemPlusChem, 2018, 83, 318-318.	2.8	2
25	Competitive Kinase Enrichment Proteomics Reveals that Abemaciclib Inhibits GSK3β and Activates WNT Signaling. Molecular Cancer Research, 2018, 16, 333-344.	3.4	33
26	The Cancer/Testes (CT) Antigen HORMAD1 promotes Homologous Recombinational DNA Repair and Radioresistance in Lung adenocarcinoma cells. Scientific Reports, 2018, 8, 15304.	3.3	43
27	Approximating Isotope Distributions of Biomolecule Fragments. ACS Omega, 2018, 3, 11383-11391.	3.5	3
28	Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Annals of the New York Academy of Sciences, 2018, 1434, 164-172.	3.8	33
29	The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/ \hat{l}^2 -catenin pathway by inhibiting the proteasome. Journal of Biological Chemistry, 2017, 292, 12503-12515.	3.4	59
30	Glycosylation of <scp>KEAP</scp> 1 links nutrient sensing to redox stress signaling. EMBO Journal, 2017, 36, 2233-2250.	7.8	82
31	Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability. PLoS ONE, 2017, 12, e0174863.	2.5	23
32	Engineering a genetically encoded competitive inhibitor of the KEAP1–NRF2 interaction via structure-based design and phage display. Protein Engineering, Design and Selection, 2016, 29, gzv055.	2.1	21
33	Dissecting the Keap1/Nrf2 pathway through proteomics. Current Opinion in Toxicology, 2016, 1, 118-124.	5.0	9
34	A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nature Communications, 2016, 7, 12105.	12.8	52
35	MSAcquisitionSimulator: data-dependent acquisition simulator for LC-MS shotgun proteomics. Bioinformatics, 2016, 32, 1269-1271.	4.1	8
36	USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2945-54.	7.1	84

#	Article	IF	CITATIONS
37	Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate. Journal of Biological Chemistry, 2016, 291, 23719-23733.	3.4	68
38	Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell International, 2016, 16, 26.	4.1	16
39	Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. ELife, 2016, 5, .	6.0	111
40	FOXP1 potentiates Wnt/ \hat{l}^2 -catenin signaling in diffuse large B cell lymphoma. Science Signaling, 2015, 8, ra12.	3.6	71
41	The mucolipidosis IV Ca2+ channel TRPML1 (MCOLN1) is regulated by the TOR kinase. Biochemical Journal, 2015, 470, 331-342.	3.7	63
42	Substrate Trapping Proteomics Reveals Targets of the \hat{I}^2 TrCP2/FBXW11 Ubiquitin Ligase. Molecular and Cellular Biology, 2015, 35, 167-181.	2.3	55
43	<i>Science Signaling</i> Podcast: 3 February 2015. Science Signaling, 2015, 8, .	3.6	0
44	Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1. Journal of Virology, 2014, 88, 9429-9441.	3.4	37
45	SNF5/INI1 Deficiency Redefines Chromatin Remodeling Complex Composition during Tumor Development. Molecular Cancer Research, 2014, 12, 1574-1585.	3.4	31
46	Spotlite: Web Application and Augmented Algorithms for Predicting Co-Complexed Proteins from Affinity Purification – Mass Spectrometry Data. Journal of Proteome Research, 2014, 13, 5944-5955.	3.7	18
47	BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization. Cancer Research, 2014, 74, 6486-6498.	0.9	104
48	Cancer-Derived Mutations in KEAP1 Impair NRF2 Degradation but not Ubiquitination. Cancer Research, 2014, 74, 808-817.	0.9	121
49	Dynamics and evolution of \hat{l}^2 -catenin-dependent Wnt signaling revealed through massively parallel clonogenic screening. Integrative Biology (United Kingdom), 2014, 6, 673-684.	1.3	2
50	Ginger Compound [6]-Shogaol and Its Cysteine-Conjugated Metabolite (M2) Activate Nrf2 in Colon Epithelial Cells <i>in Vitro</i> and <i>in Vivo</i> . Chemical Research in Toxicology, 2014, 27, 1575-1585.	3.3	60
51	Receptor Tyrosine Kinase-like Orphan Receptor 2 (Ror2) Expression Creates a Poised State of Wnt Signaling in Renal Cancer. Journal of Biological Chemistry, 2013, 288, 26301-26310.	3.4	29
52	Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination. Cancer Research, 2013, 73, 2199-2210.	0.9	209
53	FAM129B is a novel regulator of Wnt/ \hat{l}^2 -catenin signal transduction in melanoma cells. F1000Research, 2013, 2, 134.	1.6	12
54	FAM129B is a novel regulator of Wnt/ \hat{l}^2 -catenin signal transduction in melanoma cells. F1000Research, 2013, 2, 134.	1.6	21

#	Article	IF	Citations
55	Ccdc94 Protects Cells from Ionizing Radiation by Inhibiting the Expression of p53. PLoS Genetics, 2012, 8, e1002922.	3.5	21
56	FAM123A Binds to Microtubules and Inhibits the Guanine Nucleotide Exchange Factor ARHGEF2 to Decrease Actomyosin Contractility. Science Signaling, 2012, 5, ra64.	3.6	16
57	Wilms Tumor Gene on X Chromosome (WTX) Inhibits Degradation of NRF2 Protein through Competitive Binding to KEAP1 Protein. Journal of Biological Chemistry, 2012, 287, 6539-6550.	3.4	110
58	WIKI4, a Novel Inhibitor of Tankyrase and Wnt/ß-Catenin Signaling. PLoS ONE, 2012, 7, e50457.	2.5	89
59	A 1,536-Well Ultra-High-Throughput siRNA Screen to Identify Regulators of the Wnt/β-Catenin Pathway. Assay and Drug Development Technologies, 2010, 8, 286-294.	1.2	13
60	Integrative Analysis of Genome-Wide RNA Interference Screens. Science Signaling, 2009, 2, pt4.	3.6	8
61	"Omic―Risk Assessment. Science Signaling, 2009, 2, eg7.	3.6	4
62	Bruton's Tyrosine Kinase Revealed as a Negative Regulator of Wnt–β-Catenin Signaling. Science Signaling, 2009, 2, ra25.	3.6	56
63	Activated Wnt/ $\tilde{A}\ddot{Y}$ -catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1193-1198.	7.1	313
64	Î ² -catenin gets jaded and von Hippel-Lindau is to blame. Trends in Biochemical Sciences, 2009, 34, 101-104.	7. 5	20
65	New Regulators of Wnt \hat{I}^2 -Catenin Signaling Revealed by Integrative Molecular Screening. Science Signaling, 2008, 1, ra12.	3.6	135
66	Common genetic variation within the Low-Density Lipoprotein Receptor-Related Protein 6 and late-onset Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9434-9439.	7.1	252
67	Wilms Tumor Suppressor WTX Negatively Regulates WNT/ß-Catenin Signaling. Science, 2007, 316, 1043-1046.	12.6	379
68	Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development (Cambridge), 2007, 134, 479-489.	2.5	480
69	Small-molecule synergist of the Wnt/ \hat{l}^2 -catenin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7444-7448.	7.1	118
70	The Kindler Syndrome Protein Is Regulated by Transforming Growth Factor- \hat{l}^2 and Involved in Integrin-mediated Adhesion. Journal of Biological Chemistry, 2004, 279, 6824-6833.	3.4	142
71	Identification of a β 3′ Enhancer That Mediates SMAD3- and SMAD4-dependent Transcriptional Induction by Transforming Growth Factor β. Journal of Biological Chemistry, 2004, 279, 5278-5287.	3.4	40