Tatiana V Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5626903/publications.pdf

Version: 2024-02-01

566801 642321 61 749 15 23 citations h-index g-index papers 61 61 61 498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment. Environmental Geochemistry and Health, 2023, 45, 101-119.	1.8	3
2	Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environmental Geochemistry and Health, 2022, 44, 335-347.	1.8	9
3	Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants, lower Don River Basin, Southern Russia. Environmental Geochemistry and Health, 2022, 44, 349-368.	1.8	16
4	Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environmental Geochemistry and Health, 2022, 44, 319-333.	1.8	16
5	Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov) Tj ETQq1 1 0.44, 511-526.).784314 rş 1.8	gBT /Overlock 5
6	Sorption of benzo[a]pyrene by Chernozem and carbonaceous sorbents: comparison of kinetics and interaction mechanisms. Environmental Geochemistry and Health, 2022, 44, 133-148.	1.8	7
7	Methods to determine the affinity of heavy metals for the chemically extracted carrier phases in soils. Environmental Geochemistry and Health, 2022, 44, 1387-1398.	1.8	6
8	Soil organic matter and biological activity under long-term contamination with copper. Environmental Geochemistry and Health, 2022, 44, 387-398.	1.8	12
9	Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil. Environmental Geochemistry and Health, 2022, 44, 195-206.	1.8	11
10	Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater. Nanomaterials, 2022, 12, 374.	1.9	2
11	The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health, 2021, 43, 1673-1687.	1.8	27
12	Effects of benzo[a]pyrene toxicity on morphology and ultrastructure of Hordeum sativum. Environmental Geochemistry and Health, 2021, 43, 1551-1562.	1.8	19
13	Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM–EDX analyses. Environmental Geochemistry and Health, 2021, 43, 2301-2315.	1.8	20
14	Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health, 2021, 43, 2285-2300.	1.8	33
15	Nitrogen state of Haplic Chernozem of the European part of Southern Russia in the implementation of resourceâ€saving technologies. Journal of the Science of Food and Agriculture, 2021, 101, 2312-2318.	1.7	2
16	The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicology and Environmental Safety, 2021, 208, 111471.	2.9	19
17	Establishment of regional background for heavy metals in the soils of the Lower Don and the Taganrog Bay coast. E3S Web of Conferences, 2021, 265, 03004.	0.2	0
18	Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health, 2021, 43, 1655-1672.	1.8	19

#	Article	IF	CITATIONS
19	Exchangeable form of potentially toxic elements in floodplain soils along the river-marine systems of Southern Russia. Eurasian Journal of Soil Science, 2021, 10, 132-141.	0.2	4
20	The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. Plants, 2021, 10, 841.	1.6	19
21	Sources of lanthanides in soils and estimation of their hazards. Geochemistry: Exploration, Environment, Analysis, 2021, 21, geochem2021-024.	0.5	2
22	Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. Plant and Soil, 2021, 467, 91-106.	1.8	6
23	Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 2021, 13, 10362.	1.6	39
24	Reduced plant uptake of PAHs from soil amended with sunflower husk biochar. Eurasian Journal of Soil Science, 2021, 10, 269-277.	0.2	1
25	Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions. Sustainability, 2021, 13, 13825.	1.6	15
26	Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station. Environmental Geochemistry and Health, 2020, 42, 4087-4100.	1.8	33
27	Development of the Technology for Processing Plant Breeding By-Products to Obtain Biosorbent. E3S Web of Conferences, 2020, 169, 02011.	0.2	0
28	The effect of granular activated carbon on the physical properties of soils at copper contamination. E3S Web of Conferences, 2020, 175, 09003.	0.2	3
29	Assessment of health risks associated with soil contamination by heavy metal in an impact area of Novocherkassk power plant. IOP Conference Series: Earth and Environmental Science, 2020, 578, 012020.	0.2	0
30	Method for calculation the selectivity of reagents extracting heavy metals mobile compounds from soil. Applied Geochemistry, 2020, 116, 104570.	1.4	4
31	Metodological aspects in the studying of soil particle size distribution under contamination and after reclamation. E3S Web of Conferences, 2020, 169, 01025.	0.2	1
32	Assessment of extraction methods for studying the fractional composition of Cu and Zn in uncontaminated and contaminated soils. Eurasian Journal of Soil Science, 2020, 9, 231-241.	0.2	5
33	Mechanisms of copper immobilization in Fluvisol after the carbon sorbent applying. Eurasian Journal of Soil Science, 2020, 9, 356-361.	0.2	2
34	Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components. Applied Geochemistry, 2019, 102, 55-63.	1.4	15
35	Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Applied Geochemistry, 2019, 104, 102-108.	1.4	18
36	Molecular characterization of Zn in Technosols using X-ray absorption spectroscopy. Applied Geochemistry, 2019, 104, 168-175.	1.4	12

#	Article	IF	CITATIONS
37	Quantitative speciation of Zn in technosols using chemical fractionation and X-ray absorption spectroscopy. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 101-109.	0.5	2
38	Stabilization dynamics of easily and poorly soluble Zn compounds in the soil. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 184-192.	0.5	6
39	Phytoaccumulation of Benzo[a]pyrene by the Barley in Artificially Contaminated Soil. Polycyclic Aromatic Compounds, 2019, 39, 395-403.	1.4	13
40	Chemical partitioning of Zn in soil: application of two sequential extraction procedures. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 93-100.	0.5	5
41	Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 2018, 5, 217-226.	0.7	48
42	Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment, 2018, 634, 1165-1173.	3.9	27
43	Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment, 2018, 626, 1100-1107.	3.9	13
44	Comparing two methods of sequential fractionation in the study of copper compounds in Haplic chernozem under model experimental conditions. Journal of Soils and Sediments, 2018, 18, 2379-2386.	1.5	7
45	Chemical contamination in upper horizon of Haplic Chernozem as a transformation factor of its physicochemical properties. Journal of Soils and Sediments, 2018, 18, 2418-2430.	1.5	11
46	Features of accumulation, migration, and transformation of benzo[a]pyrene in soil-plant system in a model condition of soil contamination. Journal of Soils and Sediments, 2018, 18, 2361-2367.	1.5	9
47	Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter. Journal of Soils and Sediments, 2018, 18, 2217-2228.	1.5	26
48	Influence of PAH contamination on soil ecological status. Journal of Soils and Sediments, 2018, 18, 2368-2378.	1.5	31
49	Adsorption of copper by ordinary and southern chernozems from solutions of different salts. Journal of Geochemical Exploration, 2017, 176, 108-113.	1.5	10
50	Protective mechanism of the soil–plant system with respect to heavy metals. Journal of Soils and Sediments, 2017, 17, 1291-1300.	1.5	9
51	Sorption of Cu by chernozems in southern Russia. Journal of Geochemical Exploration, 2017, 174, 107-112.	1.5	11
52	Content and distribution of heavy metals in herbaceous plants under the effect of industrial aerosol emissions. Journal of Geochemical Exploration, 2017, 174, 113-120.	1.5	11
53	Heavy metals in the soil–plant system of the Don River estuarine region and the Taganrog Bay coast. Journal of Soils and Sediments, 2017, 17, 1474-1491.	1.5	30
54	Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic poluttion. Journal of Geochemical Exploration, 2017, 174, 100-106.	1.5	23

#	ARTICLE	IF	CITATIONS
55	Current State of Haplic Chernozems in Specially Protected Natural Areas of the Steppe Zone. OnLine Journal of Biological Sciences, 2017, 17, 363-371.	0.2	5
56	Combining selective sequential extractions, X-Ray Absorption Spectroscopy, and X-Ray Powder Diffraction for Cu (II) speciation in soil and mineral phases. Eurasian Journal of Soil Science, 2017, 6, 114-114.	0.2	1
57	Plant contamination by heavy metals in the impact zone of Novocherkassk Power Station in the south of Russia. Journal of Soils and Sediments, 2016, 16, 1383-1391.	1.5	13
58	Benzo[a]pyrene contamination in Rostov Region of Russian Federation: A 10-year retrospective of soil monitoring under the effect of long-term technogenic pollution. Eurasian Journal of Soil Science, 2016, 5, 155.	0.2	5
59	Specific Features of the Accumulation and Distribution of Heavy Metals in Soils of the Floodplain and Deltaic Landscapes of the Don River. American Journal of Applied Sciences, 2015, 12, 885-895.	0.1	2
60	TRANSFORMATION OF TECHNOGENIC Cu AND Zn COMPOUNDS IN CHERNOZEM. Environmental Engineering and Management Journal, 2015, 14, 481-486.	0.2	12
61	ACCUMULATION AND DISTRIBUTION OF HEAVY METALS IN PLANTS WITHIN THE TECHNOGENESIS ZONE. Environmental Engineering and Management Journal, 2014, 13, 1307-1315.	0.2	14