Hazel R Parry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5624772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inconsistent responses of conservation biocontrol to landscape structure: new insights from a networkâ€based review. Ecological Applications, 2022, 32, e02456.	3.8	5
2	Combined effects of temperature and population density of <scp><i>Myzus persicae</i>(Hemiptera:) Tj ETQq0 (</scp>) 0 rgBT /0 3.4	verlock 10 Tf 2
3	Is what you see what you get? The relationship between field observed and laboratory observed aphid parasitism rates in canola fields. Pest Management Science, 2022, 78, 3596-3607.	3.4	3
4	Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landscape Ecology, 2021, 36, 45-67.	4.2	18
5	Pesticide Toxicity Hazard of Agriculture: Regional and Commodity Hotspots in Australia. Environmental Science & Technology, 2021, 55, 1290-1300.	10.0	17
6	Simulating seasonal drivers of aphid dynamics to explore agronomic scenarios. Ecosphere, 2021, 12, e03533.	2.2	3
7	Simulating an invasion: unsealed water storage (rainwater tanks) and urban block design facilitate the spread of the dengue fever mosquito, Aedes aegypti, in Brisbane, Australia. Biological Invasions, 2021, 23, 3891-3906.	2.4	6
8	Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp. Ecological Modelling, 2021, 457, 109679.	2.5	3
9	Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Scientific Reports, 2020, 10, 22049.	3.3	28
10	Evaluation of cultural control and resistanceâ€breeding strategies for suppression of whitefly infestation of cassava at the landscape scale: a simulation modeling approach. Pest Management Science, 2020, 76, 2699-2710.	3.4	11
11	Resource landscapes and movement strategy shape Queensland Fruit Fly population dynamics. Landscape Ecology, 2019, 34, 2807-2822.	4.2	11
12	A native with a taste for the exotic: weeds and pasture provide yearâ€round habitat for Nysius vinitor (Hemiptera: Orsillidae) across Australia, with implications for areaâ€wide management. Austral Entomology, 2019, 58, 237-247.	1.4	8
13	Movement Ecology of Pest <i>Helicoverpa</i> : Implications for Ongoing Spread. Annual Review of Entomology, 2019, 64, 277-295.	11.8	64
14	Predicting monarch butterfly (Danaus plexippus) movement and egg-laying with a spatially-explicit agent-based model: The role of monarch perceptual range and spatial memory. Ecological Modelling, 2018, 374, 37-50.	2.5	89
15	Monarchs in decline: a collateral landscapeâ€level effect of modern agriculture. Insect Science, 2018, 25, 528-541.	3.0	107
16	African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS ONE, 2018, 13, e0204862.	2.5	25
17	Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology. Scientific Reports, 2018, 8, 9555.	3.3	33
18	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401

HAZEL R PARRY

#	Article	IF	CITATIONS
19	Environmental and biological drivers of flight initiation in a sporadic pest, Rutherglen bug, <i>Nysius vinitor</i> Bergroth (Hemiptera: Orsillidae). Austral Entomology, 2017, 56, 225-234.	1.4	5
20	Simulating spatially-explicit crop dynamics of agricultural landscapes: The ATLAS simulator. Ecological Informatics, 2017, 40, 62-80.	5.2	15
21	Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecological Modelling, 2017, 365, 129-140.	2.5	14
22	A perspective on management of <i>Helicoverpa armigera</i> : transgenic Bt cotton, <scp>IPM</scp> , and landscapes. Pest Management Science, 2017, 73, 485-492.	3.4	97
23	Pigeon pea refuge crops are likely to provide patchy delivery of <i>Helicoverpa</i> (Lepidoptera:) Tj ETQq1 1 0.78 439-448.	84314 rgB⊺ 1.4	Г /Overlock] 9
24	Temporal change in vegetation productivity in grain production landscapes: linking landscape complexity with pest and natural enemy communities. Ecological Entomology, 2015, 40, 56-69.	2.2	22
25	Optimal Lévy-flight foraging in a finite landscape. Journal of the Royal Society Interface, 2015, 12, 20141158.	3.4	35
26	Plant composition modulates arthropod pest and predator abundance: Evidence for culling exotics and planting natives. Basic and Applied Ecology, 2015, 16, 531-543.	2.7	33
27	Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone. Agriculture, Ecosystems and Environment, 2015, 200, 110-118.	5.3	53
28	Connecting scales: Achieving inâ€field pest control from areawide and landscape ecology studies. Insect Science, 2015, 22, 35-51.	3.0	58
29	The Challenges of Developing Spatially Explicit Network Models for the Management of Disease Vectors in Ecological Systems. Lecture Notes in Computer Science, 2014, , 159-161.	1.3	1
30	A Bayesian sensitivity analysis applied to an Agent-based model of bird population response to landscape change. Environmental Modelling and Software, 2013, 45, 104-115.	4.5	43
31	Cereal aphid movement: general principles and simulation modelling. Movement Ecology, 2013, 1, 14.	2.8	61
32	The geographical distribution of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat. Australasian Plant Pathology, 2012, 41, 375-387.	1.0	31
33	Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling. , 2012, , 271-308.		40
34	Agent Based Modeling, Large Scale Simulations. , 2012, , 76-87.		1
35	Regional variation in the efficacy of Entry Level Stewardship in England. Agriculture, Ecosystems and Environment, 2010, 139, 121-128.	5.3	30
36	Agricultural land use and Skylark <i>Alauda arvensis</i> : a case study linking a habitat association model to spatially explicit change scenarios. Ibis, 2010, 152, 63-76.	1.9	13

HAZEL R PARRY

#	Article	IF	CITATIONS
37	Assessing the impact of Entry Level Stewardship on lowland farmland birds in England. Ibis, 2010, 152, 459-474.	1.9	97
38	Agent Based Modeling, Large Scale Simulations. , 2009, , 148-160.		4
39	A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model. Ecological Modelling, 2008, 214, 141-152.	2.5	35
40	Aphid population response to agricultural landscape change: A spatially explicit, individual-based model. Ecological Modelling, 2006, 199, 451-463.	2.5	57
41	Chapter 1. Impacts of Agricultural Change on Farmland Biodiversity in the UK. Issues in Environmental Science and Technology, 0, , 1-32.	0.4	24
42	Practical guidelines for modelling post-entry spread in invasion ecology. NeoBiota, 0, 18, 41-66.	1.0	15