Georg Felix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5624412/publications.pdf

Version: 2024-02-01

109321 315739 14,273 38 35 38 citations h-index g-index papers 40 40 40 9122 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nature Plants, 2020, 6, 22-27.	9.3	46
2	Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. ELife, 2019, 8, .	6.0	48
3	Peptide Feeding and Mechanical Wounding for Tomato Seedlings. Bio-protocol, 2019, 9, e3194.	0.4	2
4	The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants, 2018, 4, 152-156.	9.3	122
5	The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants, 2018, 4, 596-604.	9.3	62
6	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	13.3	249
7	Detection of the plant parasite <i>Cuscuta reflexa</i> by a tomato cell surface receptor. Science, 2016, 353, 478-481.	12.6	108
8	The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2016, 2, 16185.	9.3	101
9	Immunity: Flagellin seen from all sides. Nature Plants, 2016, 2, 16136.	9.3	31
10	An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. Plant Physiology, 2015, 168, 1106-1121.	4.8	57
11	The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1 , e1500245.	10.3	209
12	Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology, 2014, 21, 104-111.	7.1	128
13	Tools and Strategies to Match Peptide-Ligand Receptor Pairs. Plant Cell, 2014, 26, 1838-1847.	6.6	98
14	Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. ELife, 2014, 3, .	6.0	61
15	A Two-Hybrid-Receptor Assay Demonstrates Heteromer Formation as Switch-On for Plant Immune Receptors Â. Plant Physiology, 2013, 163, 1504-1509.	4.8	27
16	Allelic variation in two distinct <i>Pseudomonas syringae</i> flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytologist, 2013, 200, 847-860.	7.3	121
17	The Receptor-Like Protein ReMAX of <i>Arabidopsis</i> Detects the Microbe-Associated Molecular Pattern eMax from <i>Xanthomonas</i> Â. Plant Cell, 2013, 25, 2330-2340.	6.6	114
18	Perception of the novel MAMP eMax from different <i>Xanthomonas</i> species requires the <i>Arabidopsis</i> receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Signaling and Behavior, 2013, 8, e27408.	2.4	45

#	Article	IF	CITATIONS
19	Chimeric FLS2 Receptors Reveal the Basis for Differential Flagellin Perception in <i>Arabidopsis</i> and Tomato. Plant Cell, 2012, 24, 2213-2224.	6.6	69
20	Regulation of cell behaviour by plant receptor kinases: Pattern recognition receptors as prototypical models. European Journal of Cell Biology, 2010, 89, 200-207.	3.6	49
21	Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1. Journal of Biological Chemistry, 2010, 285, 9444-9451.	3.4	387
22	Arabidopsis thaliana Pattern Recognition Receptors for Bacterial Elongation Factor Tu and Flagellin Can Be Combined to Form Functional Chimeric Receptors. Journal of Biological Chemistry, 2010, 285, 19035-19042.	3.4	85
23	A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 2009, 60, 379-406.	18.7	2,714
24	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	27.8	1,619
25	Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Molecular Biology, 2007, 64, 539-547.	3.9	174
26	The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. Plant Cell, 2006, 18, 465-476.	6.6	698
27	Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 2006, 125, 749-760.	28.9	1,658
28	An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiological and Molecular Plant Pathology, 2005, 67, 180-193.	2.5	44
29	The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. Plant Cell, 2004, 16, 3496-3507.	6.6	780
30	Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428, 764-767.	27.8	1,487
31	Molecular Sensing of Bacteria in Plants. Journal of Biological Chemistry, 2003, 278, 6201-6208.	3.4	200
32	Sensitivity of Different Ecotypes and Mutants of Arabidopsis thaliana toward the Bacterial Elicitor Flagellin Correlates with the Presence of Receptor-binding Sites. Journal of Biological Chemistry, 2001, 276, 45669-45676.	3 . 4	164
33	The Bacterial Elicitor Flagellin Activates Its Receptor in Tomato Cells According to the Address–Message Concept. Plant Cell, 2000, 12, 1783-1794.	6.6	105
34	A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal, 1999, 18, 277-284.	5.7	603
35	Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 1999, 18, 265-276.	5.7	1,376
36	The Plant Wound Hormone Systemin Binds with the N-Terminal Part to Its Receptor but Needs the C-Terminal Part to Activate It. Plant Cell, 1998, 10, 1561-1570.	6.6	124

GEORG FELIX

#	Article	IF	CITATIONS
37	Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant Journal, 1995, 7, 381-389.	5.7	147
38	Elicitor-Induced Ethylene Biosynthesis in Tomato Cells. Plant Physiology, 1991, 97, 19-25.	4.8	138