
Lucas B Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5624012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature, 2022, 603, 477-481.	27.8	108
2	Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nature Cell Biology, 2022, 24, 538-553.	10.3	20
3	Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nature Metabolism, 2022, 4, 711-723.	11.9	29
4	Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Molecular Cell, 2021, 81, 691-707.e6.	9.7	232
5	Differential Substrate Use in EGF―and Oncogenic KRASâ€ S timulated Human Mammary Epithelial Cells. FEBS Journal, 2021, 288, 5629-5649.	4.7	4
6	Cell-specific transcriptional control of mitochondrial metabolism by TIF1Î ³ drives erythropoiesis. Science, 2021, 372, 716-721.	12.6	25
7	Packed Cell Volume is an Overestimate in Common Cancer Cell Lines. Bio-protocol, 2021, 11, .	0.4	0
8	MFSD7C switches mitochondrial ATP synthesis to thermogenesis in response to heme. Nature Communications, 2020, 11, 4837.	12.8	21
9	Free Asparagine or Die: Cancer Cells Require Proteasomal Protein Breakdown to Survive Asparagine Depletion. Cancer Discovery, 2020, 10, 1632-1634.	9.4	1
10	MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell, 2020, 38, 97-114.e7.	16.8	46
11	Redox Debt Leads to Metabolic Bankruptcy in Tumors. Trends in Cancer, 2020, 6, 359-361.	7.4	2
12	Transcriptional Regulation of Coenzyme Q Biosynthesis By TIF1Î ³ Drives Erythropoiesis. Blood, 2019, 134, 152-152.	1.4	0
13	Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nature Chemical Biology, 2018, 14, 135-141.	8.0	32
14	Metabolic Frugality Marks Cancer Cells for Immune Targeting. Cell, 2018, 174, 1344-1346.	28.9	5
15	Aspartate is an endogenous metabolic limitation for tumour growth. Nature Cell Biology, 2018, 20, 782-788.	10.3	240
16	Taking metabolism on the road. Nature Chemical Biology, 2017, 13, 924-925.	8.0	9
17	A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nature Chemical Biology, 2016, 12, 452-458.	8.0	389
18	Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nature Reviews Cancer, 2016, 16, 680-693.	28.4	306

LUCAS B SULLIVAN

#	Article	IF	CITATIONS
19	Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin. Cell Metabolism, 2016, 24, 716-727.	16.2	269
20	Biophysical changes reduce energetic demand in growth factor–deprived lymphocytes. Journal of Cell Biology, 2016, 212, 439-447.	5.2	21
21	Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metabolism, 2016, 23, 517-528.	16.2	616
22	EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection. Cell, 2016, 164, 884-895.	28.9	108
23	Biophysical changes reduce energetic demand in growth factor–deprived lymphocytes. Journal of Experimental Medicine, 2016, 213, 2133OIA13.	8.5	0
24	Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell, 2015, 162, 552-563.	28.9	878
25	Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. ELife, 2014, 3, e02242.	6.0	851
26	Understanding the complex-I-ty of metformin action: limiting mitochondrial respiration to improve cancer therapy. BMC Biology, 2014, 12, 82.	3.8	80
27	Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle, 2014, 13, 347-348.	2.6	12
28	Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects. Cell Reports, 2014, 7, 1679-1690.	6.4	281
29	Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2014, 2, 17.	5.0	574
30	The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-Dependent Signaling. Molecular Cell, 2013, 51, 236-248.	9.7	244
31	Mitochondria and Telomeres: The Promiscuous Roles of TIN2. Molecular Cell, 2012, 47, 823-824.	9.7	12
32	Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2012, 481, 385-388.	27.8	1,074