List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5623882/publications.pdf Version: 2024-02-01

FRANTIÅ: EK MAREC

#	Article	IF	CITATIONS
1	New cytogenetic data on <i>Caryophyllaeus laticeps</i> and <i>Paracaryophyllaeus gotoi</i> , parasites of evolutionary interest. Parasitology, 2022, 149, 1094-1105.	1.5	3
2	Jekyll or Hyde? The genome (and more) of <i>Nesidiocoris tenuis</i> , a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Molecular Biology, 2021, 30, 188-209.	2.0	12
3	White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter. Nature Communications, 2021, 12, 491.	12.8	25
4	Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Molecular Genetics and Genomics, 2021, 296, 513-526.	2.1	27
5	Molecular cytogenetic analysis of a triploid population of the human broad tapeworm, <i>Dibothriocephalus latus</i> (Diphyllobothriidea). Parasitology, 2021, 148, 787-797.	1.5	7
6	The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths. Frontiers in Genetics, 2021, 12, 661417.	2.3	25
7	Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Scientific Reports, 2021, 11, 12214.	3.3	13
8	A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella. PLoS Genetics, 2021, 17, e1009420.	3.5	14
9	Degenerated, Undifferentiated, Rearranged, Lost: High Variability of Sex Chromosomes in Geometridae (Lepidoptera) Identified by Sex Chromatin. Cells, 2021, 10, 2230.	4.1	13
10	Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation. Genes, 2020, 11, 849.	2.4	11
11	The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Science Advances, 2020, 6, eaba1070.	10.3	37
12	Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity, 2020, 125, 138-154.	2.6	35
13	Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma, 2019, 128, 533-545.	2.2	5
14	Limited intrinsic postzygotic reproductive isolation despite chromosomal rearrangements between closely related sympatric species of small ermine moths (Lepidoptera: Yponomeutidae). Biological Journal of the Linnean Society, 2019, 128, 44-58.	1.6	6
15	Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera. Insects, 2019, 10, 371.	2.2	48
16	<i>Maleness-on-the-Y</i> (<i>MoY</i>) orchestrates male sex determination in major agricultural fruit fly pests. Science, 2019, 365, 1457-1460.	12.6	88
17	A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 2019, 10, 4237.	12.8	102
18	Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea. Genome Biology and Evolution, 2019, 11, 1307-1319.	2.5	30

#	Article	IF	CITATIONS
19	Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Scientific Reports, 2019, 9, 3001.	3.3	28
20	Absence of W Chromosome in Psychidae Moths and Implications for the Theory of Sex Chromosome Evolution in Lepidoptera. Genes, 2019, 10, 1016.	2.4	20
21	Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9610-E9619.	7.1	62
22	Insights into the Structure of the Spruce Budworm (<i>Choristoneura fumiferana</i>) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map. G3: Genes, Genomes, Genetics, 2018, 8, 2539-2549.	1.8	12
23	Sex Chromosomes of the Iconic Moth Abraxas grossulariata (Lepidoptera, Geometridae) and Its Congener A. sylvata. Genes, 2018, 9, 279.	2.4	22
24	W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Research, 2017, 25, 241-252.	2.2	20
25	Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, <i>Belostoma</i>). Ecology and Evolution, 2017, 7, 5227-5235.	1.9	23
26	New Insights into the Evolution of the W Chromosome in Lepidoptera. Journal of Heredity, 2017, 108, 709-719.	2.4	44
27	Novel resistance to Cydia pomonella granulovirus (CpGV) in codling moth shows autosomal and dominant inheritance and confers cross-resistance to different CpGV genome groups. PLoS ONE, 2017, 12, e0179157.	2.5	24
28	Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?. BMC Genetics, 2016, 17, 100.	2.7	26
29	A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in <i>Spodoptera frugiperda</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 1418-1427.	2.3	37
30	Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution ofÂthe northeast-Asian wood white butterfly, <i>Leptidea amurensis</i> . Biological Journal of the Linnean Society, 2016, 118, 457-471.	1.6	49
31	The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction. Heredity, 2016, 116, 424-433.	2.6	19
32	XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima. PLoS ONE, 2016, 11, e0150292.	2.5	13
33	Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evolutionary Biology, 2015, 15, 89.	3.2	51
34	Female silkworms have the sex factor. Nature, 2014, 509, 570-571.	27.8	5
35	Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Tropica, 2014, 132, S178-S187.	2.0	90
36	Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genetics, 2014, 15, S15.	2.7	18

ARTICLE IF CITATIONS Extensive variation in chromosome number and genome size in sexual and parthenogenetic species of the jumpingâ€bristletail genus <i>Machilis</i> (Ărchaeognatha). Ecology and Evolution, 2014, 4, 4093-4105. Tephritid Fruit Flies (Diptera)., 2014, , 1-62. 38 3 Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia 2.2 ssp.. Chromosome Research, 2013, 21, 149-164. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial 40 2.6 68 melanism. Heredity, 2013, 110, 283-295. Neo-sex chromosomes and adaptive potential in tortricid pests. Proceedings of the National Academy 7.1 104 of Sciences of the United States of America, 2013, 110, 6931-6936. Chromosomal Evolution in Tortricid Moths: Conserved Karyotypes with Diverged Features. PLoS ONE, 42 2.5 52 2013, 8, e64520. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of 1.1 24 Bactrocera oleae (Diptera: Tephritidae). Genetica, 2012, 140, 169-180. Organ growth without cell division: somatic polyploidy in a moth, <i>Ephestia kuehniella </i>. Genome, 44 2.0 29 2012, 55, 755-763. Evidence for Integrity of Parental Genomes in the Diploid Hybridogenetic Water Frog <i>Pelophylax esculentus</i> by Genomic in situ Hybridization. Cytogenetic and Genome 1.1 Research, 2011, 134, 206-212. Industrial Melanism in British Peppered Moths Has a Singular and Recent Mutational Origin. Science, 46 12.6 179 2011, 332, 958-960. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia 24 cynthia ssp.. Heredity, 2011, 106, 614-624. A chromosome study and localization of 18S rDNA in Khawia saurogobii (Cestoda: Caryophyllidea). 48 1.6 17 Parasitology Research, 2010, 106, 587-593. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). 1.1 Genetica, 2010, 138, 343-354. Improvement of the sterile insect technique for codling moth <i>Cydia pomonella</i> (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application. Journal of Applied Entomology, 50 1.8 45 2010, 134, 165-181. Rapid assessment of the sex of codling moth <i>Cydia pomonella</i> (Linnaeus) (Lepidoptera:) Tj ETQq1 1 0.784314, rgBT /Oyerlock Sex Chromosome Evolution in Cotton Stainers of the Genus <i>Dysdercus</i> (Heteroptera:) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 142 52

FrantiÅjek Marec

53	Extensive Conserved Synteny of Genes between the Karyotypes of Manduca sexta and Bombyx mori Revealed by BAC-FISH Mapping. PLoS ONE, 2009, 4, e7465.	2.5	45
54	Analysis of radiation-induced W chromosome aberrations in the codling moth, Cydia pomonella (L.), by fluorescence in situ hybridization techniques. Journal of Pest Science, 2008, 81, 143-151.	3.7	3

#	Article	IF	CITATIONS
55	Yellow eye, a new pigment mutation in Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Hereditas, 2008, 113, 97-100.	1.4	6
56	Serologic Survey of Birds for West Nile Flavivirus in Southern Moravia (Czech Republic). Vector-Borne and Zoonotic Diseases, 2008, 8, 659-666.	1.5	61
57	Cytogenetic Characterization and AFLP-Based Genetic Linkage Mapping for the Butterfly Bicyclus anynana, Covering All 28 Karyotyped Chromosomes. PLoS ONE, 2008, 3, e3882.	2.5	24
58	Developing Transgenic Sexing Strains for the Release of Non-Transgenic Sterile Male Codling Moths Cydia pomonella. , 2007, , 103-111.		8
59	Sex Chromosomes and Sex Determination in Lepidoptera. Sexual Development, 2007, 1, 332-346.	2.0	156
60	Conserved synteny of genes between chromosome 15 of <i>Bombyx mori</i> and a chromosome of <i>Manduca sexta</i> shown by five-color BAC-FISH. Genome, 2007, 50, 1061-1065.	2.0	30
61	Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica, 2007, 131, 141-149.	1.1	28
62	The telomere repeat motif of basal Metazoa. Chromosome Research, 2007, 15, 371-82.	2.2	79
63	Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Research, 2007, 15, 917-930.	2.2	55
64	Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma, 2007, 116, 135-145.	2.2	58
65	Development of Genetic Sexing Strains in Lepidoptera: from Traditional to Transgenic Approaches. Journal of Economic Entomology, 2005, 98, 248-259.	1.8	59
66	Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG) n telomeric probe in some species of Lepidoptera. Chromosoma, 2005, 114, 193-202.	2.2	41
67	The evolutionary origin of insect telomeric repeats, (TTAGG) N. Chromosome Research, 2005, 13, 145-156.	2.2	134
68	The effect of population density on the elimination dynamics of a recessive lethal mutation l(2)M167 DTS from experimental populations of Drosophila melanogaster. Russian Journal of Genetics, 2005, 41, 249-255.	0.6	4
69	The Effect of Male Mating Competitiveness, Developmental Rate, and Viability of Larvae and Pupae in Drosophila melanogaster Heterozygous for the Temperature-Sensitive Lethal Mutation I(2)M167 DTS on the Dynamics of the Mutation Elimination from the Population. Russian Journal of Genetics, 2005, 41, 495-500.	0.6	1
70	Selection on Viability of Individuals Heterozygous for the Temperature-Sensitive Lethal Mutation I(2)M167 DTS in Experimental Populations of Drosophila melanogaster. Russian Journal of Genetics, 2005, 41, 613-619.	0.6	0
71	Determination of Fitness Components of Flies Bearing the Recessive Lethal I(2)M167 DTS Mutation with Dominant Heat Sensitivity in Artificial Drosophila melanogaster Populations. Russian Journal of Genetics, 2005, 41, 620-629.	0.6	1

72 Inherited Sterility in Insects. , 2005, , 115-146.

74

#	Article	IF	CITATIONS
73	Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome, 2005, 48, 1083-1092.	2.0	106
74	Development of Genetic Sexing Strains in Lepidoptera: from Traditional to Transgenic Approaches. Journal of Economic Entomology, 2005, 98, 248-259.	1.8	38
75	Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 97-105.	2.6	181
76	The Synaptonemal Complex Complement of the Wax Moth, Galleria Mellonella. Hereditas, 2004, 118, 113-119.	1.4	10
77	Suppression of the Drosophila Curly mutation by fluorescent light. Hereditas, 2004, 124, 191-197.	1.4	6
78	Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, <i>Ectomyelois ceratoniae</i> (Lepidoptera: Pyralidae). Caryologia, 2004, 57, 184-194.	0.3	54
79	Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome, 2004, 47, 163-178.	2.0	130
80	Telomeric and interstitial telomeric sequences in holokinetic chromosomes of Lepidoptera: telomeric DNA mediates association between postpachytene bivalents in achiasmatic meiosis of females. Chromosome Research, 2003, 11, 681-694.	2.2	29
81	Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera). Chromosome Research, 2003, 11, 51-56.	2.2	28
82	Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome, 2003, 46, 339-342.	2.0	37
83	Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica, 2002, 115, 179-187.	1.1	76
84	Chromosomal principle of radiation-induced F ₁ sterility in <i>Ephestia kuehniella</i> (Lepidoptera: Pyralidae). Genome, 2001, 44, 172-184.	2.0	33
85	Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity, 2001, 87, 659-671.	2.6	53
86	A Mite Species That Consists Entirely of Haploid Females. Science, 2001, 292, 2479-2482.	12.6	258
87	Mutagenicity of Natural Anthraquinones from Rubia tinctorum in the Drosophila Wing Spot Test. Planta Medica, 2001, 67, 127-131.	1.3	45
88	Chromosomal principle of radiation-induced F ₁ sterility in <i>Ephestia kuehniella</i> (Lepidoptera: Pyralidae). Genome, 2001, 44, 172-184.	2.0	11
89	Radiation-Induced Inherited Sterility Combined with a Genetic Sexing System in Ephestia kuehniella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 1999, 92, 250-259. 	2.5	45
90	TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Research, 1999, 7, 449-460.	2.2	234

#	Article	IF	CITATIONS
91	Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma, 1999, 108, 173-180.	2.2	97
92	Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers. Heredity, 1997, 79, 135-143.	2.6	32
93	Sex Chromosome Differentiation in Some Species of Lepidoptera (Insecta). Chromosome Research, 1997, 5, 283-291.	2.2	55
94	Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers. Heredity, 1997, 79, 135-143.	2.6	4
95	Sex Chromatin in Lepidoptera. Quarterly Review of Biology, 1996, 71, 239-256.	0.1	100
96	Synaptonemal complexes in insects. Arthropod Structure and Development, 1996, 25, 205-233.	0.4	34
97	Sex chromosome pairing and sex chromatin bodies in W–Z translocation strains of <i>Ephestia kuehniella </i> (Lepidoptera). Genome, 1994, 37, 426-435.	2.0	44
98	High recombinagenic activities of three antiviral agents, adenine derivatives, in the Drosophila wing spot test. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 311, 305-317.	1.0	15
99	Synaptonemal complexes in female and male meiotic prophase of Ephestia kuehniella (Lepidoptera). Heredity, 1993, 71, 394-404.	2.6	35
100	Visualization of polyfusomes in gonads of a moth, Ephestia kuehniella Z. (Lepidoptera : Pyralidae), by a microspreading technique and electron microscopy. Arthropod Structure and Development, 1993, 22, 487-496.	0.4	14
101	Chromosome structure in spermatogenesis of Anabolia furcata (Trichoptera). Genome, 1992, 35, 46-52.	2.0	13
102	Genetic control of pest Lepidoptera: construction of a balanced lethal strain in <i>Ephestia kuehniella</i> . Entomologia Experimentalis Et Applicata, 1991, 61, 271-283.	1.4	20
103	Genetic control of the pest lepidoptera: Gamma-ray induction of translocations between sex chromosomes of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 1990, 26, 109-116.	2.6	27
104	Genotoxicity of the anti-juvenile hormone agent precocene II as revealed by the Drosophila wing spot test. Mutagenesis, 1989, 4, 216-220.	2.6	6
105	Analysis of the genotoxic activity of Bacillus thuringiensis β-exotoxin by means of the Drosophila wing spot test. Journal of Invertebrate Pathology, 1989, 53, 347-353.	3.2	5
106	Mutagenicity testing of the juvenoid methoprene (ZR-515) by means of the Drosophila wing spot test. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1987, 188, 209-214.	1.2	2
107	"Black distal areaâ€; a new mutation affecting wing pattern of Ephestia kuehniella Zeller (Lepidoptera:) Tj ET	Qq1 1 0.78	84314 rgBT /(
108	The effect of repeated microwave irradiation on the frequency of sex-linked recessive lethal mutations in Drosophila melanogaster. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1985, 157, 163-167.	1.2	14