David I Yule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REGULATION OF FLUID AND ELECTROLYTE SECRETION IN SALIVARY GLAND ACINAR CELLS. Annual Review of Physiology, 2005, 67, 445-469.	13.1	386
2	IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nature Communications, 2019, 10, 3726.	12.8	187
3	Evidence That Zymogen Granules Are Not a Physiologically Relevant Calcium Pool. Journal of Biological Chemistry, 1997, 272, 9093-9098.	3.4	178
4	Calcium Wave Propagation in Pancreatic Acinar Cells. Journal of General Physiology, 2000, 116, 547-560.	1.9	168
5	Phospholipase Cε Hydrolyzes Perinuclear Phosphatidylinositol 4-Phosphate to Regulate Cardiac Hypertrophy. Cell, 2013, 153, 216-227.	28.9	150
6	Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca ²⁺ release. Science Signaling, 2016, 9, ra35.	3.6	140
7	Akt Kinase Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors. Journal of Biological Chemistry, 2006, 281, 3731-3737.	3.4	133
8	Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors in Parotid Acinar Cells. Journal of Biological Chemistry, 2002, 277, 1340-1348.	3.4	130
9	Isoform- and Species-specific Control of Inositol 1,4,5-Trisphosphate (IP3) Receptors by Reactive Oxygen Species. Journal of Biological Chemistry, 2014, 289, 8170-8181.	3.4	120
10	Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome. American Journal of Human Genetics, 2016, 98, 971-980.	6.2	113
11	Crosstalk between cAMP and Ca2+ signaling in non-excitable cells. Cell Calcium, 2003, 34, 431-444.	2.4	111
12	Phosphorylation of Type-1 Inositol 1,4,5-Trisphosphate Receptors by Cyclic Nucleotide-dependent Protein Kinases. Journal of Biological Chemistry, 2003, 278, 45811-45817.	3.4	96
13	The native ORAI channel trio underlies the diversity of Ca2+ signaling events. Nature Communications, 2020, 11, 2444.	12.8	90
14	Targeted Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors Selectively Inhibits Localized Ca2+ Release and Shapes Oscillatory Ca2+ Signals. Journal of Biological Chemistry, 2000, 275, 33704-33711.	3.4	81
15	lrbit Mediates Synergy Between Ca2+ and cAMP Signaling Pathways During Epithelial Transport in Mice. Gastroenterology, 2013, 145, 232-241.	1.3	81
16	On the dynamical structure of calcium oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1456-1461.	7.1	81
17	Manganese transport via the transferrin mechanism. NeuroToxicology, 2013, 34, 118-127.	3.0	80
18	Regulation of single inositol 1,4,5â€ŧrisphosphate receptor channel activity by protein kinase A phosphorylation. Journal of Physiology, 2008, 586, 3577-3596.	2.9	79

#	Article	IF	CITATIONS
19	Modulation of [Ca2+] Signaling Dynamics and Metabolism by Perinuclear Mitochondria in Mouse Parotid Acinar Cells. Journal of Biological Chemistry, 2004, 279, 12909-12917.	3.4	78
20	Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium, 2010, 47, 469-479.	2.4	77
21	Cytosolic Ca2+and Ca2+â€activated Clâ^'current dynamics: insights from two functionally distinct mouse exocrine cells. Journal of Physiology, 2002, 540, 469-484.	2.9	75
22	Differential regulation of the InsP ₃ receptor typeâ€1 and â€2 single channel properties by InsP ₃ , Ca ²⁺ and ATP. Journal of Physiology, 2012, 590, 3245-3259.	2.9	75
23	ATP Modulation of Ca2+ Release by Type-2 and Type-3 Inositol (1, 4, 5)-Triphosphate Receptors. Journal of Biological Chemistry, 2008, 283, 21579-21587.	3.4	72
24	Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. Journal of Clinical Investigation, 2016, 126, 4303-4318.	8.2	68
25	Functional Consequences of Phosphomimetic Mutations at Key cAMP-dependent Protein Kinase Phosphorylation Sites in the Type 1 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2004, 279, 46242-46252.	3.4	63
26	The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release. Journal of Biological Chemistry, 2015, 290, 7304-7313.	3.4	61
27	Protein Kinase A Increases Type-2 Inositol 1,4,5-Trisphosphate Receptor Activity by Phosphorylation of Serine 937. Journal of Biological Chemistry, 2009, 284, 25116-25125.	3.4	59
28	A Kinetic Model for Type I and II IP3R Accounting for Mode Changes. Biophysical Journal, 2012, 103, 658-668.	0.5	59
29	The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1992-2005.	4.1	57
30	Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling. Cell Reports, 2021, 34, 108760.	6.4	57
31	IP3R deficit underlies loss of salivary fluid secretion in Sjögren's Syndrome. Scientific Reports, 2015, 5, 13953.	3.3	55
32	Secretagogues cause ubiquitination and down-regulation of inositol 1,4,5-trisphosphate receptors in rat pancreatic acinar cells. Gastroenterology, 1999, 116, 1194-1201.	1.3	53
33	Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells. Journal of Physiology, 2005, 564, 791-801.	2.9	53
34	All three IP ₃ receptor isoforms generate Ca ²⁺ puffs that display similar characteristics. Science Signaling, 2018, 11, .	3.6	53
35	A Role for Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors in Defining Calcium Signals Induced by Peptide Agonists in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2002, 277, 31949-31956.	3.4	51
36	Bcl-2-Protein Family as Modulators of IP ₃ Receptors and Other Organellar Ca ²⁺ Channels. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035089.	5.5	50

#	Article	IF	CITATIONS
37	Molecular Characterization of the Inositol 1,4,5-Trisphosphate Receptor Pore-forming Segment. Journal of Biological Chemistry, 2008, 283, 2939-2948.	3.4	49
38	Bok regulates mitochondrial fusion and morphology. Cell Death and Differentiation, 2019, 26, 2682-2694.	11.2	49
39	Phenotypic changes in mouse pancreatic stellate cell Ca ²⁺ signaling events following activation in culture and in a disease model of pancreatitis. Molecular Biology of the Cell, 2011, 22, 421-436.	2.1	48
40	Tracing the Evolutionary History of Inositol, 1, 4, 5-Trisphosphate Receptor: Insights from Analyses of <i>Capsaspora owczarzaki</i> Ca ²⁺ Release Channel Orthologs. Molecular Biology and Evolution, 2015, 32, 2236-2253.	8.9	44
41	A dynamic model of saliva secretion. Journal of Theoretical Biology, 2010, 266, 625-640.	1.7	43
42	Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2+. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 947-956.	4.1	43
43	Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. Journal of Biological Chemistry, 2018, 293, 17464-17476.	3.4	42
44	Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death and Differentiation, 2022, 29, 788-805.	11.2	41
45	Tumor Necrosis Factor-α Potentiates Intraneuronal Ca2+ Signaling via Regulation of the Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2008, 283, 33069-33079.	3.4	40
46	Functional Inositol 1,4,5-Trisphosphate Receptors Assembled from Concatenated Homo- and Heteromeric Subunits. Journal of Biological Chemistry, 2013, 288, 29772-29784.	3.4	40
47	The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling. Nature Immunology, 2022, 23, 287-302.	14.5	40
48	Ca2+-dependent Protein Kinase-A Modulation of the Plasma Membrane Ca2+-ATPase in Parotid Acinar Cells. Journal of Biological Chemistry, 2002, 277, 48172-48181.	3.4	39
49	Apical Ca2+-activated potassium channels in mouse parotid acinar cells. Journal of General Physiology, 2012, 139, 121-133.	1.9	39
50	Unique Regulatory Properties of Heterotetrameric Inositol 1,4,5-Trisphosphate Receptors Revealed by Studying Concatenated Receptor Constructs. Journal of Biological Chemistry, 2016, 291, 4846-4860.	3.4	37
51	The Type 2 Inositol (1,4,5)-Trisphosphate (InsP3) Receptor Determines the Sensitivity of InsP3-induced Ca2+ Release to ATP in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2008, 283, 26081-26088.	3.4	36
52	Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells. American Journal of Physiology - Renal Physiology, 2003, 285, G804-G812.	3.4	35
53	ATP Regulation of Type-1 Inositol 1,4,5-Trisphosphate Receptor Activity Does Not Require Walker A-type ATP-binding Motifs. Journal of Biological Chemistry, 2009, 284, 16156-16163.	3.4	35
54	Protein kinase C regulation of P2X3 receptors is unlikely to involvedirect receptor phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 166-175.	4.1	34

#	Article	IF	CITATIONS
55	The trans-membrane domain of Bcl-2α, but not its hydrophobic cleft, is a critical determinant for efficient IP3 receptor inhibition. Oncotarget, 2016, 7, 55704-55720.	1.8	34
56	Subtype-Specific Regulation of Inositol 1,4,5-Trisphosphate Receptors. Journal of General Physiology, 2001, 117, 431-434.	1.9	33
57	Fluoride exposure alters Ca ²⁺ signaling and mitochondrial function in enamel cells. Science Signaling, 2020, 13, .	3.6	33
58	Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production. Science Signaling, 2018, 11, .	3.6	32
59	Fragmented Inositol 1,4,5-Trisphosphate Receptors Retain Tetrameric Architecture and Form Functional Ca2+ Release Channels. Journal of Biological Chemistry, 2013, 288, 11122-11134.	3.4	31
60	Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cellular and Molecular Life Sciences, 2019, 76, 3843-3859.	5.4	31
61	The Mitochondrial Ca2+ uniporter is a central regulator of interorganellar Ca2+ transfer and NFAT activation. Journal of Biological Chemistry, 2021, 297, 101174.	3.4	30
62	Ca ²⁺ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis. American Journal of Physiology - Renal Physiology, 2007, 293, G1166-G1177.	3.4	28
63	Modulation of Ca2+ oscillations by phosphorylation of Ins(1,4,5)P3 receptors. Biochemical Society Transactions, 2003, 31, 954-957.	3.4	27
64	Alpha-Helical Destabilization of the Bcl-2-BH4-Domain Peptide Abolishes Its Ability to Inhibit the IP3 Receptor. PLoS ONE, 2013, 8, e73386.	2.5	27
65	ATP Binding to a Unique Site in the Type-1 S2- Inositol 1,4,5-Trisphosphate Receptor Defines Susceptibility to Phosphorylation by Protein Kinase A. Journal of Biological Chemistry, 2006, 281, 17410-17419.	3.4	26
66	Tumor Necrosis Factor-α-mediated Regulation of the Inositol 1,4,5-Trisphosphate Receptor Promoter. Journal of Biological Chemistry, 2009, 284, 27557-27566.	3.4	26
67	Studying isoform-specific inositol 1,4,5-trisphosphate receptor function and regulation. Methods, 2008, 46, 177-182.	3.8	25
68	Regulation of Inositol 1,4,5-Trisphosphate Receptors by Phosphorylation and Adenine Nucleotides. Current Topics in Membranes, 2010, 66, 273-298.	0.9	24
69	Visualizing form and function in organotypic slices of the adult mouse parotid gland. American Journal of Physiology - Renal Physiology, 2008, 295, G629-G640.	3.4	23
70	Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus―patch clamp. Cell Calcium, 2014, 56, 96-107.	2.4	22
71	Functional communication between IP ₃ R and STIM2 at subthreshold stimuli is a critical checkpoint for initiation of SOCE. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
72	InsP3R-associated cGMP Kinase Substrate Determines Inositol 1,4,5-Trisphosphate Receptor Susceptibility to Phosphoregulation by Cyclic Nucleotide-dependent Kinases. Journal of Biological Chemistry, 2010, 285, 37927-37938.	3.4	21

#	Article	IF	CITATIONS
73	DPB162-AE, an inhibitor of store-operated Ca2+ entry, can deplete the endoplasmic reticulum Ca2+ store. Cell Calcium, 2017, 62, 60-70.	2.4	21
74	Modelling the effects of calcium waves and oscillations on saliva secretion. Journal of Theoretical Biology, 2012, 305, 45-53.	1.7	20
75	Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Frontiers in Physiology, 2018, 9, 801.	2.8	20
76	Multiscale modelling of saliva secretion. Mathematical Biosciences, 2014, 257, 69-79.	1.9	19
77	Inositol 1,4,5-Trisphosphate Receptor Mutations Associated with Human Disease. Messenger (Los) Tj ETQq1 1	0.784314 r 0.3	rgBŢ∫Overloc
78	Protein kinase A regulation of P2X4 receptors: Requirement for a specific motif in the C-terminus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 275-287.	4.1	18
79	Platelet olfactory receptor activation limits platelet reactivity and growth of aortic aneurysms. Journal of Clinical Investigation, 2022, 132, .	8.2	18
80	Proteolytic fragmentation of inositol 1,4,5â€trisphosphate receptors: a novel mechanism regulating channel activity?. Journal of Physiology, 2016, 594, 2867-2876.	2.9	17
81	Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. Journal of Biological Chemistry, 2017, 292, 11714-11726.	3.4	17
82	Pancreatic acinar cells: Molecular insight from studies of signal-transduction using transgenic animals. International Journal of Biochemistry and Cell Biology, 2010, 42, 1757-1761.	2.8	16
83	Stimulus-secretion Coupling in Pancreatic Acinar Cells. , 2012, , 1361-1398.		16
84	Using concatenated subunits to investigate the functional consequences of heterotetrameric inositol 1,4,5-trisphosphate receptors. Biochemical Society Transactions, 2015, 43, 364-370.	3.4	16
85	Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. Journal of Biological Chemistry, 2020, 295, 18160-18178.	3.4	16
86	Highly localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion. ELife, 2021, 10, .	6.0	16
87	Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Molecular Neurobiology, 2020, 57, 2539-2550.	4.0	14
88	Regulation of Ca ²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. American Journal of Physiology - Renal Physiology, 2012, 302, G97-G104.	3.4	13
89	Inositol 1,4,5-trisphosphate Receptor Mutations associated with Human Disease. Messenger (Los) Tj ETQq1 1 (0.784314 r 0.3	gBT_/Overlock
90	Impaired TNF-α control of IP3R-mediated Ca2+ release in Alzheimer's disease mouse neurons. Cellular Signalling, 2010, 22, 519-526.	3.6	12

6

#	Article	IF	CITATIONS
91	A Model of \$\$hbox {Ca}^{2+}\$\$ Dynamics in an Accurate Reconstruction of Parotid Acinar Cells. Bulletin of Mathematical Biology, 2019, 81, 1394-1426.	1.9	11
92	Sex-Specific Platelet Activation Through Protease-Activated Receptors Reverses in Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 390-400.	2.4	11
93	Metabolic adaptation to the chronic loss of Ca2+ signaling induced by KO of IP3 receptors or the mitochondrial Ca2+Âuniporter. Journal of Biological Chemistry, 2022, 298, 101436.	3.4	11
94	Differential regulation of ion channels function by proteolysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1698-1706.	4.1	10
95	Modeling calcium waves in an anatomically accurate three-dimensional parotid acinar cell. Journal of Theoretical Biology, 2017, 419, 383-393.	1.7	9
96	New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 613-621.	2.8	9
97	Acetylcholine Inhibits Platelet Activation. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 182-187.	2.5	9
98	A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells. Bulletin of Mathematical Biology, 2019, 81, 699-721.	1.9	9
99	Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight, 2021, 6, .	5.0	8
100	CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. Journal of Cell Science, 2021, 134, .	2.0	8
101	A protocol for detecting elemental calcium signals (Ca2+ puffs) in mammalian cells using total internal reflection fluorescence microscopy. STAR Protocols, 2021, 2, 100618.	1.2	8
102	Spatial and temporal crosstalk between the cAMP and Ca2+ signaling systems. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119293.	4.1	8
103	Calcium Dynamics and Water Transport in Salivary Acinar Cells. Bulletin of Mathematical Biology, 2021, 83, 31.	1.9	7
104	Tracing the evolutionary history of Ca2+-signaling modulation by human Bcl-2: Insights from the Capsaspora owczarzaki IP3 receptor ortholog. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119121.	4.1	7
105	Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion. Ocular Surface, 2019, 17, 272-277.	4.4	6
106	Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. Journal of Biological Chemistry, 2018, 293, 13112-13124.	3.4	5
107	A Multicellular Model of Primary Saliva Secretion in the Parotid Gland. Bulletin of Mathematical Biology, 2020, 82, 38.	1.9	5
108	Carbohydrate Loading to Combat Acute Pancreatitis. Trends in Biochemical Sciences, 2018, 43, 741-744.	7.5	3

#	Article	IF	CITATIONS
109	Can pancreatitis be treated by inhibiting Ca2+ signaling?. Annals of Translational Medicine, 2018, 6, 124-124.	1.7	3
110	A Mathematical Model of Salivary Gland Duct Cells. Bulletin of Mathematical Biology, 2022, 84, .	1.9	3
111	In vivo Ca2+ Imaging in Mouse Salivary Glands. Bio-protocol, 2022, 12, e4380.	0.4	2
112	An inside job: Annexin 1A-Inositol 1,4,5-trisphosphate receptor interaction conveys endoplasmic reticulum luminal Ca2+ sensitivity. Cell Calcium, 2020, 90, 102250.	2.4	1
113	Pivotal role of type-1 inositol 1,4,5-trisphosphate receptor for glucagon-induced gluconeogenesis. Cell Calcium, 2020, 90, 102243.	2.4	1
114	A KRAP(y) job: Defining the localization of active IP3R. Cell Calcium, 2021, 100, 102470.	2.4	1
115	Subcellular Ca ²⁺ Puffs Mediated By Different Inositol Trisphosphate Receptor Isoforms. FASEB Journal, 2018, 32, 750.33.	0.5	1
116	Preface. Cell Calcium, 2014, 55, 281.	2.4	0
117	ATP Potentiates Insitolâ€1,4,5â€ŧriphosphateâ€induced Calcium Release in Permeabilized Parotid and Pancreatic Acini. FASEB Journal, 2008, 22, 1181.2.	0.5	0
118	Phospholipase C ε Regulates Multiple Agonistsâ€Induced Cardiomyocyte Hypertrophy in Neonatal Rat Ventricular Myocytes By Binding To mAKAP (Muscle Aâ€Kinase Anchoring Protein) And Generating Local IP3â€Dependent Nuclear Calcium Release. FASEB Journal, 2011, 25, 1012.1.	0.5	0
110	Intracellular BiP/GRP78 Mediates Endothelial Cell Permeability and Inflammation Associated with	0.5	0

Acute Lung Injury. FASEB Journal, 2019, 33, lb610.