
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562229/publications.pdf Version: 2024-02-01

YONG-LE LU

#	Article	IF	CITATIONS
1	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	3.9	14
2	The interaction of and DNA repair gene mutations and their impact on tumor mutation burden and immune response in human malignancies American Journal of Cancer Research, 2022, 12, 1866-1883.	1.4	0
3	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
4	The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers, 2021, 13, 345.	3.7	6
5	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	12.8	40
6	A Novel CpG Methylation Risk Indicator for Predicting Prognosis in Bladder Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 642650.	3.7	8
7	Noninvasive Detection of Clinically Significant Prostate Cancer Using Circulating Tumor Cells. Journal of Urology, 2020, 203, 73-82.	0.4	30
8	Reply by Authors. Journal of Urology, 2020, 203, 81-82.	0.4	0
9	Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. Journal of Pathology, 2019, 249, 151-165.	4.5	80
10	Sequencing a Single Circulating Tumor Cell for Genomic Assessment. , 2019, , 219-232.		0
11	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	2.5	21
12	The Isolation and Analysis of Circulating Tumor Cells. Methods in Molecular Biology, 2019, 2054, 115-128.	0.9	3
13	Fluorescence In Situ Hybridization and Rehybridization Using Bacterial Artificial Chromosome Probes. Methods in Molecular Biology, 2019, 2054, 243-261.	0.9	0
14	The potential of brentuximab vedotin, alone or in combination with current clinical therapies, in the treatment of testicular germ cell tumors. American Journal of Cancer Research, 2019, 9, 855-871.	1.4	1
15	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	21.4	182
16	Sensitisation to mitoxantrone-induced apoptosis by the oncolytic adenovirus Adâ^†â^† through Bcl-2-dependent attenuation of autophagy. Oncogenesis, 2018, 7, 6.	4.9	12
17	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
18	The Prognostic Value of PIK3CA Copy Number Gain in Penile Cancer. Urology, 2018, , .	1.0	5

#	Article	IF	CITATIONS
19	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	4.1	3
20	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
21	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
22	PIK3CA copy number aberration and activation of the PI3K-AKT-mTOR pathway in varied disease states of penile cancer. PLoS ONE, 2018, 13, e0198905.	2.5	5
23	Analysis of the PI3K-AKT-mTOR pathway in penile cancer: evaluation of a therapeutically targetable pathway. Oncotarget, 2018, 9, 16074-16086.	1.8	16
24	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	4.1	11
25	The Novel Association of Circulating Tumor Cells and Circulating Megakaryocytes with Prostate Cancer Prognosis. Clinical Cancer Research, 2017, 23, 5112-5122.	7.0	50
26	Postchemotherapy changes in testicular germ cell tumours: biology and morphology. Histopathology, 2017, 70, 26-39.	2.9	9
27	Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Scientific Reports, 2017, 7, 5124.	3.3	17
28	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	3.5	34
29	MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity. Oncotarget, 2016, 7, 47444-47464.	1.8	27
30	<i>NKAIN2</i> functions as a novel tumor suppressor in prostate cancer. Oncotarget, 2016, 7, 63793-63803.	1.8	7
31	A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population. Oncotarget, 2016, 7, 21393-21403.	1.8	18
32	Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System. PLoS ONE, 2015, 10, e0138032.	2.5	174
33	Protein S-palmitoylation and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 107-120.	7.4	69
34	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
35	DNA replication-dependent induction of gene proximity by androgen. Human Molecular Genetics, 2015, 24, 963-971.	2.9	9
36	Gonorrhea and Prostate Cancer Incidence: An Updated Meta-Analysis of 21 Epidemiologic Studies. Medical Science Monitor, 2015, 21, 1895-1903.	1.1	25

#	Article	IF	CITATIONS
37	Circulating Tumor Cells: A Window to Understand Cancer Metastasis, Monitor and Fight Against Cancers. Journal of Cancer Research Updates, 2015, 4, .	0.3	9
38	AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. American Journal of Cancer Research, 2015, 5, 1741-50.	1.4	34
39	High frequency of the SDK1:AMACR fusion transcript in Chinese prostate cancer. International Journal of Clinical and Experimental Medicine, 2015, 8, 15127-36.	1.3	6
40	The structure and function of NKAIN2-a candidate tumor suppressor. International Journal of Clinical and Experimental Medicine, 2015, 8, 17072-9.	1.3	6
41	Transcription-Mediated Chimeric RNAs in Prostate Cancer: Time to Revisit Old Hypothesis?. OMICS A Journal of Integrative Biology, 2014, 18, 615-624.	2.0	28
42	Prognostic and Therapeutic Impact of Argininosuccinate Synthetase 1 Control in Bladder Cancer as Monitored Longitudinally by PET Imaging. Cancer Research, 2014, 74, 896-907.	0.9	122
43	Identification of ZDHHC14 as a novel human tumour suppressor gene. Journal of Pathology, 2014, 232, 566-577.	4.5	44
44	Amplification and overâ€expression of <i><scp>MAP3K3</scp></i> gene in human breast cancer promotes formation and survival of breast cancer cells. Journal of Pathology, 2014, 232, 75-86.	4.5	30
45	Co-expression of RAGE and HMGB1 is associated with cancer progression and poor patient outcome of prostate cancer. American Journal of Cancer Research, 2014, 4, 369-77.	1.4	30
46	Involvement of different mechanisms for the association of CAG repeat length polymorphism in androgen receptor gene with prostate cancer. American Journal of Cancer Research, 2014, 4, 886-96.	1.4	6
47	The Effect of VEGF-Targeted Therapy on Biomarker Expression in Sequential Tissue from Patients with Metastatic Clear Cell Renal Cancer. Clinical Cancer Research, 2013, 19, 6924-6934.	7.0	62
48	Association between DNA methylation of HSPB1 and death in low Gleason score prostate cancer. Prostate Cancer and Prostatic Diseases, 2013, 16, 35-40.	3.9	31
49	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
50	Ethnical disparities of prostate cancer predisposition: genetic polymorphisms in androgen-related genes. American Journal of Cancer Research, 2013, 3, 127-51.	1.4	11
51	The complexity of prostate cancer: genomic alterations and heterogeneity. Nature Reviews Urology, 2012, 9, 652-664.	3.8	167
52	Identification of frequent <i>BRAF</i> copy number gain and alterations of <i>RAF</i> genes in chinese prostate cancer. Genes Chromosomes and Cancer, 2012, 51, 1014-1023.	2.8	46
53	Highâ€resolution genomeâ€wide copyâ€number analysis suggests a monoclonal origin of multifocal prostate cancer. Genes Chromosomes and Cancer, 2012, 51, 579-589.	2.8	49
54	The different genetic alterations between Western and Chinese prostate cancers and the underlying mechanisms Journal of Clinical Oncology, 2012, 30, 184-184.	1.6	0

#	Article	IF	CITATIONS
55	Truncation of BRAF and Raf1 in prostate cancer in China Journal of Clinical Oncology, 2012, 30, 77-77.	1.6	Ο
56	Chinese and Western prostate cancers show alternate pathogenetic pathways in association with ERG status. American Journal of Cancer Research, 2012, 2, 736-44.	1.4	17
57	Absolute Quantitation of DNA Methylation of 28 Candidate Genes in Prostate Cancer Using Pyrosequencing. Disease Markers, 2011, 30, 151-161.	1.3	74
58	Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas. PLoS ONE, 2011, 6, e17517.	2.5	73
59	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265
60	Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. American Journal of Cancer Research, 2011, 1, 604-17.	1.4	26
61	Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing. Disease Markers, 2011, 30, 151-61.	1.3	52
62	Androgen-Induced <i>TMPRSS2:ERG</i> Fusion in Nonmalignant Prostate Epithelial Cells. Cancer Research, 2010, 70, 9544-9548.	0.9	93
63	Distinct Genomic Alterations in Prostate Cancers in Chinese and Western Populations Suggest Alternative Pathways of Prostate Carcinogenesis. Cancer Research, 2010, 70, 5207-5212.	0.9	150
64	The identification of chromosomal translocation, t(4;6)(q22;q15), in prostate cancer. Prostate Cancer and Prostatic Diseases, 2010, 13, 117-125.	3.9	5
65	The Association of CCND1 Overexpression and Cisplatin Resistance in Testicular Germ Cell Tumors and Other Cancers. American Journal of Pathology, 2010, 176, 2607-2615.	3.8	89
66	The relative activity of cisplatin, oxaliplatin and satraplatin in testicular germ cell tumour sensitive and resistant cell lines. Cancer Chemotherapy and Pharmacology, 2009, 64, 925-933.	2.3	10
67	Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nature Genetics, 2009, 41, 1116-1121.	21.4	389
68	Metastatic potential of lung squamous cell carcinoma associated with HSPC300 through its interaction with WAVE2. Lung Cancer, 2009, 65, 299-305.	2.0	21
69	Use of SNPs in cancer predisposition analysis, diagnosis and prognosis: tools and prospects. Expert Opinion on Medical Diagnostics, 2009, 3, 313-326.	1.6	1
70	Identification of genomic changes associated with cisplatin resistance in testicular germ cell tumor cell lines. Genes Chromosomes and Cancer, 2008, 47, 604-613.	2.8	21
71	Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian Journal of Andrology, 2008, 10, 467-473.	1.6	41
72	Subtle genomic alterations and genomic instability revealed in diploid cancer cell lines. Cancer Letters, 2008, 267, 49-54.	7.2	4

#	Article	IF	CITATIONS
73	The Application of Single Nucleotide Polymorphism Microarrays in Cancer Research. Current Genomics, 2007, 8, 219-228.	1.6	60
74	The pattern of genomic gains in salivary gland MALT lymphomas. Haematologica, 2007, 92, 921-927.	3.5	25
75	Role for Amplification and Expression of Glypican-5 in Rhabdomyosarcoma. Cancer Research, 2007, 67, 57-65.	0.9	94
76	Identification of a Recurrent t(4;6) Chromosomal Translocation in Prostate Cancer. Journal of Urology, 2007, 177, 1907-1912.	0.4	5
77	Rapid high-resolution karyotyping with precise identification of chromosome breakpoints. Genes Chromosomes and Cancer, 2007, 46, 675-683.	2.8	17
78	Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without t(11;18)(q21;q21). British Journal of Haematology, 2006, 133, 35-42.	2.5	56
79	Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosomes and Cancer, 2006, 45, 839-845.	2.8	50
80	A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma. Cancer Genetics and Cytogenetics, 2005, 159, 1-9.	1.0	42
81	Overexpression of genes on 16q associated with cisplatin resistance of testicular germ cell tumor cell lines. Genes Chromosomes and Cancer, 2005, 43, 211-216.	2.8	22
82	Relationship Between MYCN Copy Number and Expression in Rhabdomyosarcomas and Correlation With Adverse Prognosis in the Alveolar Subtype. Journal of Clinical Oncology, 2005, 23, 880-888.	1.6	106
83	Association between Large-scale Genomic Homozygosity without Chromosomal Loss and Nonseminomatous Germ Cell Tumor Development. Cancer Research, 2005, 65, 9137-9141.	0.9	14
84	Expression profiling targeting chromosomes for tumor classification and prediction of clinical behavior. Genes Chromosomes and Cancer, 2003, 38, 207-214.	2.8	18
85	Loss of 13q14-q21 and Gain of 5p14-pter in the Progression of Leiomyosarcoma. Modern Pathology, 2003, 16, 778-785.	5.5	27
86	Chromosome 1q expression profiling and relapse in Wilms' tumour. Lancet, The, 2002, 360, 385-386.	13.7	57
87	Gain of 1q Is Associated with Adverse Outcome in Favorable Histology Wilms' Tumors. American Journal of Pathology, 2001, 158, 393-398.	3.8	127
88	Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosomes and Cancer, 2001, 31, 54-64.	2.8	55
89	Disruption of the ATM gene in breast cancer. Cancer Genetics and Cytogenetics, 2001, 126, 97-101.	1.0	14
90	Evaluation of 24-color multifluor-fluorescence in-situ hybridization (M-FISH) karyotyping by comparison with reverse chromosome painting of the human breast cancer cell line T-47D. Chromosome Research, 2000, 8, 127-132.	2.2	18

#	Article	IF	CITATIONS
91	Synovial sarcoma specific translocation associated with both epithelial and spindle cell components. , 1999, 82, 605-608.		32
92	Dual colour fluorescencein situ hybridization to paraffin-embedded samples to deduce the presence of the der(X)t(X;18)(p11.2;q11.2) and involvement of either theSSX1 orSSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. , 1999, 187, 490-496.		55
93	Chromosome 3 imbalances are the most frequent aberration found in non-small cell lung carcinoma. Lung Cancer, 1999, 23, 61-66.	2.0	30
94	Cloning and Mapping of Members of the MYM Family. Genomics, 1999, 60, 244-247.	2.9	28
95	Establishment and characterization of a SV40T-transformed human bronchial epithelial cell line. Lung Cancer, 1998, 19, 15-24.	2.0	13
96	cDNA Cloning of a Third Human C2-Domain-Containing Class II Phosphoinositide 3-Kinase, PI3K-C2γ, and Chromosomal Assignment of This Gene (PIK3C2G) to 12p12. Genomics, 1998, 54, 569-574.	2.9	57
97	Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene, 1997, 15, 2233-2239.	5.9	298
98	Phyllodes tumors of the breast analyzed by comparative genomic hybridization and association of increased 1q copy number with stromal overgrowth and recurrence. Genes Chromosomes and Cancer, 1997, 20, 275-281.	2.8	59
99	ICAAR, a Novel Member of a New Family of Transmembrane, Tyrosine Phosphatase-like Proteins. Biochemical and Biophysical Research Communications, 1996, 229, 402-411.	2.1	22
100	Integration of SV40 at 12q23 in SV40-immortalized human bronchial epithelial cells. Carcinogenesis, 1996, 17, 2089-2091.	2.8	13
101	2q-, a non-random chromosomal abnormality in human non-small-cell lung cancer. Carcinogenesis, 1996, 17, 1589-1593.	2.8	9
102	Direct chromosome analysis of 50 primary breast carcinomas. Cancer Genetics and Cytogenetics, 1993, 69, 91-99.	1.0	33