Shogo Ehata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5621652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO Journal, 2011, 30, 783-795.	7.8	205
2	Whole-Body Profiling of Cancer Metastasis with Single-Cell Resolution. Cell Reports, 2017, 20, 236-250.	6.4	194
3	Ki26894, a novel transforming growth factor-? type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Science, 2007, 98, 127-133.	3.9	173
4	Effect of Smad7 Expression on Metastasis of Mouse Mammary Carcinoma JygMC(A) Cells. Journal of the National Cancer Institute, 2005, 97, 1734-1746.	6.3	110
5	Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Frontiers of Medicine, 2018, 12, 387-411.	3.4	108
6	<scp>ZEB</scp> 1â€regulated inflammatory phenotype in breast cancer cells. Molecular Oncology, 2017, 11, 1241-1262.	4.6	100
7	TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discovery, 2018, 4, 1.	6.7	97
8	Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuseâ€ŧype gastric carcinomaâ€initiating cells is inhibited by TGFâ€i². Journal of Pathology, 2012, 228, 391-404.	4.5	91
9	A Long Non-coding RNA Activated by Transforming Growth Factor-β is an Independent Prognostic Marker of Gastric Cancer. Annals of Surgical Oncology, 2015, 22, 915-922.	1.5	91
10	Transforming Growth Factor-β Promotes Survival of Mammary Carcinoma Cells through Induction of Antiapoptotic Transcription Factor DEC1. Cancer Research, 2007, 67, 9694-9703.	0.9	90
11	Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nature Cell Biology, 2020, 22, 465-475.	10.3	89
12	Tumor-promoting functions of transforming growth factor-β in progression of cancer. Upsala Journal of Medical Sciences, 2012, 117, 143-152.	0.9	87
13	CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP) Regulates Osteoblast Differentiation. Molecular and Cellular Biology, 2006, 26, 6105-6116.	2.3	82
14	EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discovery, 2015, 1, 15026.	6.7	75
15	Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Research, 2019, 7, 1.	11.4	72
16	Transforming growth factorâ€Î²â€induced lnc <scp>RNA</scp> â€5mad7 inhibits apoptosis of mouse breast cancer Jyg <scp>MC</scp> (A) cells. Cancer Science, 2014, 105, 974-982.	3.9	65
17	Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene, 2018, 37, 2757-2772.	5.9	61
18	Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-1 ² -dependent and -independent mechanisms. Oncogene, 2018, 37, 2197-2212.	5.9	60

SHOGO EHATA

#	Article	IF	CITATIONS
19	Autocrine BMP-4 Signaling Is a Therapeutic Target in Colorectal Cancer. Cancer Research, 2017, 77, 4026-4038.	0.9	55
20	Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nature Metabolism, 2019, 1, 868-875.	11.9	53
21	Bone Morphogenetic Protein-2 and -4 Play Tumor Suppressive Roles in Human Diffuse-Type Gastric Carcinoma. American Journal of Pathology, 2011, 179, 2920-2930.	3.8	50
22	Biâ€directional roles of bone morphogenetic proteins in cancer: Another molecular Jekyll and Hyde?. Pathology International, 2013, 63, 287-296.	1.3	50
23	Smad4 Decreases the Population of Pancreatic Cancer–Initiating Cells through Transcriptional Repression of ALDH1A1. American Journal of Pathology, 2015, 185, 1457-1470.	3.8	50
24	Autocrine TGF-Î ² protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. Journal of Biochemistry, 2011, 149, 55-65.	1.7	49
25	Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells. Proceedings of the United States of America, 2011, 108, 12384-12389.	7.1	40
26	Prostate Cancer Cells and Bone Stromal Cells Mutually Interact with Each Other through Bone Morphogenetic Protein-mediated Signals. Journal of Biological Chemistry, 2012, 287, 20037-20046.	3.4	40
27	Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes To Cells, 2006, 11, 1267-1280.	1.2	35
28	ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death and Differentiation, 2017, 24, 2066-2076.	11.2	34
29	Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Science Signaling, 2016, 9, ra84.	3.6	33
30	Comparative analysis of TTFâ€1 binding DNA regions in smallâ€cell lung cancer and nonâ€smallâ€cell lung cancer. Molecular Oncology, 2020, 14, 277-293.	4.6	22
31	EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis, 2021, 10, 26.	4.9	22
32	Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	22
33	Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Molecular Oncology, 2021, 15, 151-166.	4.6	17
34	câ€ 5 ki accelerates renal cancer progression by attenuating transforming growth factor β signaling. Cancer Science, 2019, 110, 2063-2074.	3.9	15
35	Whole-organ analysis of TGF-β-mediated remodelling of the tumour microenvironment by tissue clearing. Communications Biology, 2021, 4, 294.	4.4	14
36	Genomeâ€wide analysis of DNA methylation identifies the apoptosisâ€related gene <i>UQCRH</i> as a tumor suppressor in renal cancer. Molecular Oncology, 2022, 16, 732-749.	4.6	9

SHOGO EHATA

#	Article	IF	CITATIONS
37	AAG8 promotes carcinogenesis by activating STAT3. Cellular Signalling, 2014, 26, 1863-1869.	3.6	8
38	Visualization of the cancer cell cycle by tissueâ€clearing technology using the Fucci reporter system. Cancer Science, 2021, 112, 3796-3809.	3.9	7
39	Protocol for Imaging and Analysis of Mouse Tumor Models with CUBIC Tissue Clearing. STAR Protocols, 2020, 1, 100191.	1.2	6
40	Heterogenous expression of endoglin marks advanced renal cancer with distinct tumor microenvironment fitness. Cancer Science, 2021, 112, 3136-3149.	3.9	4
41	Whole-organ profiling of drug resistance in cancer. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR35-4.	0.0	Ο
42	An in vivo orthotopic serial passaging model for a metastatic renal cancer study. STAR Protocols, 2022, 3, 101306.	1.2	0