Yucheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619968/publications.pdf

Version: 2024-02-01

161	16,869	46	129
papers	citations	h-index	g-index
170	170	170	14185
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Powder X-ray structural analysis and bandgap measurements for $(Ca<)MnWO6) () = 0.25, 0.5, 0.75, 1.5, 1.75). Powder Diffraction, 2022, 37, 122-132.$	0.2	1
2	Boron carbide amorphous solid with tunable band gap. Journal of Alloys and Compounds, 2021, 861, 157951.	5 . 5	7
3	Vacancy ordering induced topological electronic transition in bulk Eu ₂ ZnSb ₂ . Science Advances, 2021, 7, .	10.3	21
4	Safe and flexible chitosanâ€based polymer gel as an electrolyte for use in zincâ€alkaline based chemistries. Journal of Applied Polymer Science, 2021, 138, 50813.	2.6	15
5	Rechargeable Zinc-Electrolytic Manganese Dioxide (EMD) Battery with a Flexible Chitosan-Alkaline Electrolyte. ACS Applied Energy Materials, 2021, 4, 4248-4258.	5.1	15
6	Magnetic motion of superparamagnetic iron oxide nanoparticles- loaded dental adhesives: physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomaterialia, 2021, 134, 337-347.	8.3	11
7	Nanostructuring enforced sandwich-tubular CNT-Cu interconnects. Composite Structures, 2021, 278, 114705.	5.8	1
8	Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS Nano, 2021, 15, 19888-19904.	14.6	21
9	Structural and optical properties of Ba3(Nb6â^'xTax)Si4O26 (x = 0.6, 1.8, 3.0, 4.2, 5.4). Powder Diffraction, 2019, 34, 331-338.	0.2	1
10	Enhanced Thermoelectric Performance of Zintl Phase Ca ₉ Zn _{4+<i>x</i>} Sb ₉ by Beneficial Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder on the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site. ACS Applied Materials & Disorder On the Selective Cationic Site Selective Cationic Selective Cationic Site Selective Cationic Select	8.0	17
11	Wood cellulose-based thin gel electrolyte with enhanced ionic conductivity. MRS Communications, 2019, 9, 1015-1021.	1.8	11
12	Structural and optical properties of Ba(Co _{1â^'x} Zn _x)SiO ₄ (<i>x</i>) Tj ETQo	q0,00 rgB	T ₄ Overlock 1
13	Magic auxeticity angle of graphene. Carbon, 2019, 149, 350-354.	10.3	38
14	Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. Applied Sciences (Switzerland), 2019, 9, 678.	2.5	46
15	Cellulose hydrogel as a flexible gel electrolyte layer. MRS Communications, 2019, 9, 122-128.	1.8	25
16	Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Electrochimica Acta, 2019, 297, 833-841.	5.2	59
17	Lead Chalcogenide Thermoelectric Materials. , 2019, , 83-104.		1
18	Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47, 199-209.	16.0	202

#	Article	IF	Citations
19	Individually grown cobalt nanowires as magnetic force microscopy probes. Applied Physics Letters, 2018, 112, 092401.	3.3	10
20	Basic Concepts and Recent Advances of Crystallographic Orientation Determination of Graphene by Raman Spectroscopy. Crystals, 2018, 8, 375.	2.2	21
21	A Review of Current Development of Graphene Mechanics. Crystals, 2018, 8, 357.	2.2	68
22	CBED Investigations of Boron Monoarsenide Crystals. Microscopy and Microanalysis, 2018, 24, 30-31.	0.4	0
23	EELS Investigations of Carbon-rich Boron Carbide Nanomaterials. Microscopy and Microanalysis, 2018, 24, 1756-1757.	0.4	2
24	Single-molecule magnet behaviour in a tetranuclear Dy ^{III} complex formed from a novel tetrazine-centered hydrazone Schiff base ligand. Dalton Transactions, 2017, 46, 2471-2478.	3.3	47
25	Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Letters, 2017, 9, 47.	27.0	348
26	Rational Design of Cobalt–Iron Selenides for Highly Efficient Electrochemical Water Oxidation. ACS Applied Materials & Distriction (1988) Applied (1988) Applied Materials & Distriction (1988) Applied (1988)	8.0	140
27	Half-Heuslers for High Temperatures. , 2017, , 297-352.		0
28	Solar Thermoelectric Power Generators. , 2017, , 735-768.		0
29			
	Contact for Bi2Te3-Based Thermoelectric Leg. , 2017, , 605-624.		2
30	Contact for Bi2Te3-Based Thermoelectric Leg. , 2017, , 605-624. Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121.	2.9	7
30	Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121. Higher thermoelectric performance of Zintl phases (Eu _{0.5} Yb _{0.5}) _{1â"x} Ca _x Mg ₂ Bi ₂ by band engineering and strain fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2016,	2.9	
	Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121. Higher thermoelectric performance of Zintl phases (Eu _{0.5} Yb _{0.5} (sub>0.5) _{1â^3x} Ca _x Mg ₂ Bi ₂ by band engineering and strain		7
31	Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121. Higher thermoelectric performance of Zintl phases (Eu _{0.5} Yb _{0.5}) _{1â^*x} Ca _x Mg ₂ Bi ₂ by band engineering and strain fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113. E4125-32. Thermoelectric Nanocomposites for Thermal Energy Conversion. Nanoscience and Technology, 2016, ,	7.1	7 145
31	Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121. Higher thermoelectric performance of Zintl phases (Eu _{0.5} Yb _{0.5}) _{1â^'x} Ca _x Mg ₂ Bi ₂ by band engineering and strain fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113. E4125-32. Thermoelectric Nanocomposites for Thermal Energy Conversion. Nanoscience and Technology, 2016, , 371-443. Highly active and durable self-standing WS ₂ /graphene hybrid catalysts for the hydrogen	7.1	7 145 5
31 32 33	Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review. Micromachines, 2016, 7, 121. Higher thermoelectric performance of Zintl phases (Eu ⟨sub⟩0.5⟨/sub⟩ Yb ⟨sub⟩0.5⟨/sub⟩) ⟨sub⟩1â°²x⟨/sub⟩ Ca ⟨sub⟩x⟨/sub⟩ Mg ⟨sub⟩2⟨/sub⟩ Bi ⟨sub⟩2⟨/sub⟩ by band engineering and strain fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113. E4125-32. Thermoelectric Nanocomposites for Thermal Energy Conversion. Nanoscience and Technology, 2016, , 371-443. Highly active and durable self-standing WS⟨sub⟩2⟨/sub⟩/graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9472-9476. Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides	7.1 1.5 10.3	7 145 5 75

#	Article	IF	CITATIONS
37	Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4â^'xCoxSb12. Acta Materialia, 2016, 117, 13-22.	7.9	26
38	Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage. ChemNanoMat, 2016, 2, 688-691.	2.8	38
39	One-step synthesis of self-supported porous NiSe 2 /Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy, 2016, 20, 29-36.	16.0	279
40	Chemical Reduction of Nd1.85Ce0.15CuO4â^ÎPowders in Supercritical Sodium Ammonia Solutions. Advances in Condensed Matter Physics, 2015, 2015, 1-5.	1.1	1
41	Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4â^'xCoxSb12. Journal of Applied Physics, 2015, 117, 055101.	2.5	31
42	Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97â^'Cu Sb0.99. Acta Materialia, 2015, 87, 266-272.	7.9	53
43	Gallium nitride porous microtubules self-assembled from wurtzite nanorods. Journal of Crystal Growth, 2015, 415, 139-145.	1.5	8
44	Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. Nanoscale, 2015, 7, 9153-9157.	5.6	35
45	Experimental study of the proposed super-thermal-conductor: BAs. Applied Physics Letters, 2015, 106, .	3.3	68
46	Study on thermoelectric performance by Na doping in nanostructured Mg1-Na Ag0.97Sb0.99. Nano Energy, 2015, 11, 640-646.	16.0	74
47	Li ₃ VO ₄ anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chemical Communications, 2015, 51, 229-231.	4.1	107
48	Effect of triple fillers in thermoelectric performance of p-type skutterudites. Journal of Alloys and Compounds, 2015, 623, 104-108.	5.5	26
49	Enhanced Thermal Stability of Wâ€Niâ€Al ₂ O ₃ Cermetâ€Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. Advanced Energy Materials, 2015, 5, 1401042.	19.5	144
50	Determination of Thermal History by Photoluminescence of Coreâ€Shelled Quantum Dots Going Through Heating Events. Particle and Particle Systems Characterization, 2015, 32, 65-71.	2.3	13
51	Carbon-coated rhombohedral Li ₃ V ₂ (PO ₄) ₃ as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014, 2, 20231-20236.	10.3	44
52	Investigating the thermoelectric properties of p-type half-Heusler Hf _x (ZrTi) _{1â°x} CoSb _{0.8} Sn _{0.2} by reducing Hf concentration for power generation. RSC Advances, 2014, 4, 64711-64716.	3.6	54
53	High thermoelectric performance of MgAgSb-based materials. Nano Energy, 2014, 7, 97-103.	16.0	264
54	Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy, 2014, 4, 113-122.	16.0	64

#	Article	IF	CITATIONS
55	NbFeSb-based p-type half-Heuslers for power generation applications. Energy and Environmental Science, 2014, 7, 4070-4076.	30.8	174
56	Nanostructured YbAgCu ₄ for Potentially Cryogenic Thermoelectric Cooling. Nano Letters, 2014, 14, 5016-5020.	9.1	19
57	Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10966-10971.	7.1	20
58	Thermoelectric performance of Ni compensated cerium and neodymium double filled p-type skutterudites. Physical Chemistry Chemical Physics, 2014, 16, 18170-18175.	2.8	20
59	Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy, 2014, 8, 110-117.	16.0	36
60	Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8Sn x Te0.2â^'x. Jom, 2014, 66, 2282-2287.	1.9	7
61	Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12. Acta Materialia, 2014, 75, 316-321.	7.9	52
62	Nanoporous gallium nitride square microtubes. Journal of Materials Science, 2013, 48, 7703-7707.	3.7	2
63	Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2, 1031-1045.	16.0	348
64	The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound. Nano Energy, 2013, 2, 1172-1178.	16.0	35
65	Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20â^xClx. Nano Energy, 2013, 2, 1121-1127.	16.0	30
66	High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13261-13266.	7.1	632
67	Aligned Carbon Nanotubes. Nanoscience and Technology, 2013, , .	1.5	45
68	Internal Temperature Calibration at Nanoscale on in situ Heating High Resolution Transmission Electron Microscopy. Microscopy and Microanalysis, 2013, 19, 498-499.	0.4	1
69	Growth Mechanism and Elemental Distribution of <l>Î ² </l>-Ga₂O₃ Crystalline Nanowires Synthesized by Cobalt-Assisted Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology. 2012. 12. 3101-3107.	0.9	6
70	Paramagnetic microspheres with core–shell-ed structures. Journal of Materials Science, 2012, 47, 5946-5954.	3.7	1
71	Chemical Vapor Deposition of Carbon Nanotubes. Nanoscience and Technology, 2012, , 67-91.	1.5	0
72	Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition. Nanoscience and Technology, 2012, , 93-109.	1.5	2

#	Article	IF	CITATIONS
73	Technologies to Achieve Carbon Nanotube Alignment. Nanoscience and Technology, 2012, , 111-156.	1.5	1
74	Measurement Techniques of Aligned Carbon Nanotubes. Nanoscience and Technology, 2012, , 157-182.	1.5	0
75	Properties and Applications of Aligned Carbon Nanotube Arrays. Nanoscience and Technology, 2012, , 183-253.	1.5	0
76	Growth Techniques of Carbon Nanotubes. Nanoscience and Technology, 2012, , 45-66.	1.5	0
77	Potential Applications of Carbon Nanotube Arrays. Nanoscience and Technology, 2012, , 255-290.	1.5	0
78	Introduction to Carbon. Nanoscience and Technology, 2012, , 1-5.	1.5	2
79	Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers. Nano Letters, 2011, 11, 556-560.	9.1	362
80	Physics and applications of aligned carbon nanotubes. Advances in Physics, 2011, 60, 553-678.	14.4	128
81	Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites. Nano Letters, 2011, 11, 2225-2230.	9.1	461
82	Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 924-927.	1.8	22
83	Thermoelectric Property Studies on Cuâ€Doped nâ€type Cu _x Bi ₂ Te _{2.7} Se _{0.3} Nanocomposites. Advanced Energy Materials, 2011, 1, 577-587.	19.5	535
84	Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3â^'xcompounds. Physical Review B, 2011, 83, .	3.2	61
85	Efficient nanocoaxâ€based solar cells. Physica Status Solidi - Rapid Research Letters, 2010, 4, 181-183.	2.4	87
86	Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi ₂ Te _{2.7} Se _{0.3} . Nano Letters, 2010, 10, 3373-3378.	9.1	608
87	Enhancement of Thermoelectric Figureâ€ofâ€Merit by a Bulk Nanostructuring Approach. Advanced Functional Materials, 2010, 20, 357-376.	14.9	795
88	A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology, 2010, 5, 597-601.	31.5	322
89	Grids for Applications in High-Temperature High-Resolution Transmission Electron Microscopy. Journal of Nanotechnology, 2010, 2010, 1-6.	3.4	4
90	Field Emission from Few-Layer Graphene Nanosheets Produced by Liquid Phase Exfoliation of Graphite. Journal of Nanoscience and Nanotechnology, 2010, 10, 5051-5055.	0.9	33

#	Article	IF	CITATIONS
91	Na ₂ SO ₄ Monocrystal Nanowires—Aspect Ratio Control and Electron Beam Radiolysis. Inorganic Chemistry, 2010, 49, 6748-6754.	4.0	7
92	Assembly of multi-functional nanocomponents on periodic nanotube array for biosensors. Micro and Nano Letters, 2009, 4, 27-33.	1.3	14
93	Nanothermometer Using Single Crystal Silver Nanospheres. Advanced Materials, 2009, 21, 4839-4844.	21.0	30
94	Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride. Nano Letters, 2009, 9, 1419-1422.	9.1	236
95	Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium. Physical Review Letters, 2009, 102, 196803.	7.8	263
96	Solubility study of Yb in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n </mml:mi> </mml:math> -type skutterudites <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>Yb </mml:mtext> </mml:mrow> <mml:mi>x <</mml:mi></mml:msub></mml:mrow></mml:math>	3.2 /mml:mi>	104 «/mml:msub
97	Physical Review B, 2009, 80, . Enhancement of Thermoelectric Figure-of-Merit by a Nanostructure Approach. Materials Research Society Symposia Proceedings, 2009, 1166, 3.	0.1	5
98	High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, 2008, 320, 634-638.	12.6	4,843
99	Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters, 2008, 93, .	3.3	623
100	Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Letters, 2008, 8, 4670-4674.	9.1	1,014
101	Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks. Nano Letters, 2008, 8, 2580-2584.	9.1	515
102	The great improvement effect of pores on ZT in Colâ^'xNixSb3 system. Applied Physics Letters, 2008, 93, .	3.3	46
103	Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials. Applied Physics Letters, 2008, 92, .	3.3	97
104	Nanostructured Thermoelectric Skutterudite Co1â^'xNixSb3 Alloys. Journal of Nanoscience and Nanotechnology, 2008, 8, 4003-4006.	0.9	31
105	Glucose sensors made of novel carbon nanotubeâ€gold nanoparticle composites. BioFactors, 2007, 30, 271-277.	5.4	18
106	Anisotropic vapor phase growth of Ga2O3 crystalline nanobelts. Journal of Crystal Growth, 2006, 290, 585-591.	1.5	9
107	Single crystal growth of gallium nitride in supercritical ammonia. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2066-2069.	0.8	3
108	Interactions between a rotating polarized sphere and a stationary one in an electric field. Physical Review E, 2005, 72, 041508.	2.1	13

#	Article	IF	CITATIONS
109	INTERACTIONS BETWEEN TWO ROTATING POLARIZED SPHERES. International Journal of Modern Physics B, 2005, 19, 1215-1221.	2.0	0
110	Experimental investigation of the frequency dependence of the electrorheological effect. Physical Review E, 2004, 70, 021507.	2.1	14
111	Structure, magnetic susceptibility and resistivity properties of SrVO3. Journal of Alloys and Compounds, 2003, 354, 95-98.	5.5	59
112	STRUCTURE-ENHANCED YIELD SHEAR STRESS IN ELECTRORHEOLOGICAL FLUIDS. International Journal of Modern Physics B, 2002, 16, 2622-2628.	2.0	7
113	Electric-Field Induced Formation of Superconducting Granular Balls. International Journal of Modern Physics B, 2002, 16, 2529-2535.	2.0	3
114	X-ray powder diffraction data and Rietveld refinement for a new iodate: (LiFe1/3)(IO3)2. Powder Diffraction, 2002, 17, 132-134.	0.2	1
115	Superconductivity at 45ÂK in La2CuO4+δ oxidized by NaClO. Applied Physics A: Materials Science and Processing, 2002, 74, 79-82.	2.3	9
116	Electric-field induced low temperature superconducting granular balls. Physica C: Superconductivity and Its Applications, 2002, 377, 357-361.	1.2	20
117	Synthesis, thermal and magnetic properties of new metal iodate: (LiFe1/3)(IO3)2. Journal of Crystal Growth, 2002, 240, 526-530.	1.5	4
118	Phase relations in the MgO–Ga2O3–B2O3 system and the crystal structure of MgGaBO4. Journal of Alloys and Compounds, 2001, 319, 247-252.	5.5	18
119	Synthesis and Raman characteristics of hexagonal AlxGa1-xN alloy nanocrystalline solids through ammonothermal routes. Applied Physics A: Materials Science and Processing, 2001, 72, 125-127.	2.3	11
120	Radial growth dynamics of nanowires. Journal of Crystal Growth, 2001, 222, 586-590.	1.5	40
121	Growth and characterization of SrMoO3 thin films. Journal of Crystal Growth, 2001, 226, 261-266.	1.5	28
122	Photoluminescence spectrum of straight GaN nanowires. Journal of Materials Science Letters, 2001, 20, 757-758.	0.5	9
123	Ab Initio Structure Determination of New Compound LiAlB2O5. Journal of Solid State Chemistry, 2001, 156, 181-184.	2.9	15
124	Dependence of the shear stress on particle properties in electrorheological fluids. International Journal of Modern Physics B, 2001, 15, 938-946.	2.0	3
125	STRUCTURAL AND SUPERCONDUCTING PROPERTIES OF La2CuO4+Î′ OXIDIZED BY KMnO4 UNDER HYDROTHERMAL CONDITIONS. Modern Physics Letters B, 2001, 15, 1171-1179.	1.9	2
126	The Electrostatic Interaction between Coated Particles in Electrorheological Fluids. International Journal of Modern Physics B, 2001, 15, 788-794.	2.0	3

#	Article	IF	Citations
127	MORPHOLOGICAL STABILITY OF A NANOWIRE DURING GROWTH PROCESS. Modern Physics Letters B, 2001, 15, 27-31.	1.9	14
128	Epitaxial growth and electric characteristics of SrMoO3 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 930-933.	2.1	20
129	Structure of Bi2Nd4O9 Monoclinic Phase. Journal of Solid State Chemistry, 2000, 153, 30-33.	2.9	4
130	Straight and Smooth GaN Nanowires. Advanced Materials, 2000, 12, 1432-1434.	21.0	181
131	Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. Journal of Crystal Growth, 2000, 213, 198-202.	1.5	79
132	Formation of GaN nanorods by a sublimation method. Journal of Crystal Growth, 2000, 213, 408-410.	1.5	125
133	Synthesis and structure of nanocrystal-assembled bulk GaN. Journal of Crystal Growth, 2000, 209, 208-212.	1.5	34
134	Structure and superconducting properties of chemically oxidized La2CuO4+y under hydrothermal conditions. Physica C: Superconductivity and Its Applications, 2000, 336, 151-156.	1.2	12
135	Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Materials Research Bulletin, 2000, 35, 2325-2330.	5.2	28
136	Morphology of GaN in ammonia. Journal of Materials Science Letters, 2000, 19, 2215-2217.	0.5	3
137	Raman-scattering spectrum of GaN straight nanowires. Applied Physics A: Materials Science and Processing, 2000, 71, 345-346.	2.3	18
138	A new method for synthesis of amorphous carbon nitride powders. Applied Physics A: Materials Science and Processing, 2000, 71, 465-467.	2.3	13
139	Synthesis and photoluminescence characteristics of AlN nanocrystalline solids. Applied Physics A: Materials Science and Processing, 2000, 71, 351-352.	2.3	9
140	Morphologies of GaN one-dimensional materials. Applied Physics A: Materials Science and Processing, 2000, 71, 587-588.	2.3	50
141	Synthesis, Raman scattering, and infrared spectra of a new condensed form of GaN nanophase material. Journal of Materials Research, 2000, 15, 267-269.	2.6	12
142	RED EMISSION FROM GaN NANOCRYSTALLINE SOLIDS. Modern Physics Letters B, 2000, 14, 583-588.	1.9	7
143	Hydrothermal oxidation: a new chemical oxidation method to dope oxygen in La2CuO4+ \hat{l} . Superconductor Science and Technology, 2000, 13, 1415-1418.	3.5	5
144	Fabrication of nano-sized AlGaN alloy by dry milling and thermal annealing. Journal of Alloys and Compounds, 2000, 309, L13-L15.	5.5	6

#	Article	IF	Citations
145	Experimental study of dielectric constant influence on electrorheological effect. Journal Physics D: Applied Physics, 2000, 33, 1239-1243.	2.8	17
146	Structure and Heat Capacity of Wurtzite GaN from 113 to 1073 K. Chinese Physics Letters, 1999, 16, 107-108.	3.3	47
147	The Interaction between Two Spheres in Silicone Oil under an Electric Field. International Journal of Modern Physics B, 1999, 13, 1767-1774.	2.0	2
148	Structural transformations of Bi2CuO4 induced by mechanical deformation. Journal of Applied Physics, 1999, 85, 3155-3158.	2.5	10
149	Orientation of particles in an electrorheological fluid under an electric field. Physical Review E, 1999, 60, 4336-4339.	2.1	11
150	Low-temperature synthesis and photoluminescence of AlN. Journal of Crystal Growth, 1999, 207, 247-250.	1.5	76
151	The electrorheological behavior of complex strontium titanate suspensions. Applied Physics Letters, 1998, 73, 1326-1328.	3.3	23
152	The dependence of particle permittivity on the shear stress of electrorheological fluids. Applied Physics Letters, 1998, 72, 653-655.	3.3	16
153	The conductivity dependence of the shear stress in electrorheological fluids. Applied Physics Letters, 1998, 73, 2908-2910.	3.3	19
154	The effects of composition, synthesis conditions, oxygen content and F doping on superconductivity and structure for R-substituted Bi-2201. Superconductor Science and Technology, 1996, 9, 297-302.	3.5	9
155	New 1212 type (Pb, Cd) based cuprate superconducting system (Pb0.5Cd0.5)Sr2(Tb1â^'xCax)Cu2O7. Physica C: Superconductivity and Its Applications, 1995, 251, 110-114.	1.2	7
156	An empirical rule of critical temperature in cuprate superconductors. Solid State Communications, 1995, 96, 401-403.	1.9	2
157	Formation of the (Pb, Cd)-1212 phase in the (Pb0.5Cd0.5)Sr2RCu2O7 system. Journal of Alloys and Compounds, 1995, 228, 45-48.	5.5	3
158	XPS Study on TI _{1.8â€<i>y</i>} Ba ₂ Ca _{2.2} Cu ₃ O _{10â€Î} Superconductors with <i>T</i> _c < 125 K. Physica Status Solidi (B): Basic Research, 1994, 186, K13.	1.5	0
159	A study on the effects of Tl2O3 vapour for obtaining Tl-2223 superconductors with $Tc(R=0) > 125$ K. Physica C: Superconductivity and Its Applications, 1994, 224, 196-198.	1.2	0
160	The critical current irreversibility and modification of Bi(2223)/Ag tapes at high fields. Physica C: Superconductivity and Its Applications, 1994, 235-240, 3025-3026.	1.2	2
161	Tl Content and Transition Temperature in Tlâ€2223 Superconductors. Physica Status Solidi (B): Basic Research, 1993, 178, K91.	1.5	2