$\tilde{\mathcal{D}}^{"}\tilde{\mathcal{D}}_{4}\tilde{\mathcal{D}}_{N}\tilde{\mathcal{N}}\in\tilde{\mathcal{D}}_{2}\tilde{\mathcal{D}}^{1}\tilde{\mathcal{D}}^{3}\tilde{\mathcal{A}}\tilde{\mathcal{D}}^{3}\tilde{\mathcal{D}}^{'}\tilde{\mathcal{D}}^{0}\tilde{\mathcal{D}}^{1}\tilde{\mathcal{A}}\tilde{\mathcal{D}}^{3}\tilde{\mathcal{A}}\tilde{\mathcal{D}}^{3}$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619716/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing of Renewable Wood Biomass into Thermally Modified Pellets with Increased Combustion Value. Lecture Notes in Mechanical Engineering, 2020, , 387-397.	0.4	7
2	Increasing Calorific Value of Biogas by Steam Explosion Activation of Renewable Raw Materials. Lecture Notes in Mechanical Engineering, 2020, , 1261-1270.	0.4	1
3	Plant for production of wood polymeric paving slabs. IOP Conference Series: Materials Science and Engineering, 2019, 687, 022006.	0.6	1
4	Application of the Method of Statistical Modeling and Parametric Identification for Automation of the Processes of Wood Treatment. , 2018, , .		8
5	Application of software solutions for modeling and analysis of parameters of belt drive in engineering. IOP Conference Series: Earth and Environmental Science, 2017, 87, 082047.	0.3	23
6	Mechanization of Continuous Production of Powdered Cellulose Technology. IOP Conference Series: Materials Science and Engineering, 2017, 221, 012010.	0.6	10
7	Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release. , 2017, , .		23
8	Modeling of Delignification Process of Activated Wood and Equipment for its Implementation. IOP Conference Series: Materials Science and Engineering, 2017, 221, 012009.	0.6	13
9	Equipment for the Production of Wood-Polymeric Thermal Insulation Materials. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012097.	0.6	25
10	Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012088.	0.6	9
11	Mathematical modelling of the steam explosion treatment process for pre-impregnated lignocellulosic material. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012087.	0.6	8
12	Modeling of thermal treatment of wood waste in the gasifiers. , 2015, , .		13
13	Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenomena, 0, 284, 773-778.	0.3	20
14	Physical and Chemical Properties of Activated Lignocellulose and its Areas of Application. Solid State Phenomena, 0, 284, 779-784.	0.3	12
15	The Interpretation of CPTu, PMT, SPT and Cross-Hole Tests in Stiff Clay. IOP Conference Series: Earth and Environmental Science, 0, 221, 012009.	0.3	22
16	Microcrystalline Cellulose from Lignocellulosic Material Activated by Steam Explosion Treatment and Mathematical Modeling of the Processes Accompanying its Preparation. Materials Science Forum, 0, 945, 911-918.	0.3	2
17	New Chemical Fibers Obtained from Wood, Activated by Steam Explosion Treatment. Solid State Phenomena, 0, 299, 1017-1023.	0.3	3
18	Strength Properties of Composite Board Materials Based on Ligno-Cellulose Fiber, Modified by Steam Explosion Treatment. Solid State Phenomena, 0, 299, 986-992.	0.3	6

#	Article	IF	CITATIONS
19	Evaluation of the Influence of the Conditions of Catalytic Continuous Steam Explosive Activation of Wood on the Physical and Operational Properties of Wooded Composite Materials Based on Activated Fibers. Key Engineering Materials, 0, 887, 129-137.	0.4	4