
## Humberto MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619465/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. Journal of Fungi (Basel, Switzerland), 2022,<br>8, 368.                                                                                                                                          | 3.5 | 15        |
| 2  | A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. International Microbiology, 2021, 24, 531-543.                                                                                                                        | 2.4 | 12        |
| 3  | Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK<br>Pathway Circuitry. Journal of Fungi (Basel, Switzerland), 2021, 7, 647.                                                                             | 3.5 | 8         |
| 4  | Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. International Journal of Molecular Sciences, 2021, 22, 1110.                                                                             | 4.1 | 16        |
| 5  | Fungal Signaling: from Homeostasis to Pathogenesis. International Microbiology, 2020, 23, 1-3.                                                                                                                                                              | 2.4 | Ο         |
| 6  | Not just the wall: the other ways to turn the yeast CWI pathway on. International Microbiology, 2020, 23, 107-119.                                                                                                                                          | 2.4 | 41        |
| 7  | Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit<br>unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS Journal, 2020, 287, 4881-4901.                                               | 4.7 | 15        |
| 8  | Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. International Journal of Molecular Sciences, 2019, 20, 1709.                                                                              | 4.1 | 62        |
| 9  | Educating in antimicrobial resistance awareness: adaptation of the Small World Initiative program to service-learning. FEMS Microbiology Letters, 2018, 365, .                                                                                              | 1.8 | 19        |
| 10 | Laser induced breakdown spectroscopy for the discrimination of Candida strains. Talanta, 2016, 155, 101-106.                                                                                                                                                | 5.5 | 21        |
| 11 | Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. Methods in Molecular<br>Biology, 2016, 1447, 385-398.                                                                                                                                 | 0.9 | 3         |
| 12 | An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the<br>Yeast Cell Wall Integrity Pathway. Journal of Biological Chemistry, 2016, 291, 5461-5472.                                                           | 3.4 | 13        |
| 13 | Wide-Ranging Effects of the Yeast Ptc1 Protein Phosphatase Acting Through the MAPK Kinase Mkk1.<br>Genetics, 2016, 202, 141-156.                                                                                                                            | 2.9 | 24        |
| 14 | Identification of putative negative regulators of yeast signaling through a screening for protein<br>phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genetics and Biology,<br>2015, 77, 1-11.                                   | 2.1 | 21        |
| 15 | Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular<br>Systems Biology, 2015, 11, 800.                                                                                                                           | 7.2 | 47        |
| 16 | A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity<br>Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission<br>Yeasts. PLoS ONE, 2014, 9, e85390.                              | 2.5 | 6         |
| 17 | Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2<br>Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components.<br>Molecular and Cellular Proteomics, 2013, 12, 557-574. | 3.8 | 52        |
| 18 | The <i>Salmonella</i> Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in <i>Saccharomyces cerevisiae</i> Molecular Biology of the Cell, 2012, 23, 4430-4443.                                       | 2.1 | 14        |

Humberto MartÃn

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Molecular Genetics and Genomics, 2011, 285, 341-354.                                                                                    | 2.1 | 25        |
| 20 | Distinct Docking Mechanisms Mediate Interactions between the Msg5 Phosphatase and Mating or Cell<br>Integrity Mitogen-activated Protein Kinases (MAPKs) in Saccharomyces cerevisiae. Journal of<br>Biological Chemistry, 2011, 286, 42037-42050.           | 3.4 | 15        |
| 21 | Fine regulation of <i>Saccharomyces cerevisiae</i> MAPK pathways by postâ€translational modifications. Yeast, 2010, 27, 503-511.                                                                                                                           | 1.7 | 29        |
| 22 | Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and<br>isoforms of the dual-specificity phosphatase Msg5. Molecular Genetics and Genomics, 2009, 281,<br>345-359.                                                  | 2.1 | 24        |
| 23 | A yeast-based genetic screen for identification of pathogenicSalmonella proteins. FEMS Microbiology<br>Letters, 2009, 296, 167-177.                                                                                                                        | 1.8 | 11        |
| 24 | Dissecting the transcriptional activation function of the cell wall integrity MAP kinase. Yeast, 2007, 24, 335-342.                                                                                                                                        | 1.7 | 18        |
| 25 | Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface<br>Sensor and the Slt2 MAPK Pathway. Journal of Biological Chemistry, 2006, 281, 39785-39795.                                                             | 3.4 | 107       |
| 26 | Protein phosphatases in MAPK signalling: we keep learning from yeast. Molecular Microbiology, 2005, 58, 6-16.                                                                                                                                              | 2.5 | 139       |
| 27 | Reciprocal Regulation between Slt2 MAPK and Isoforms of Msg5 Dual-specificity Protein Phosphatase<br>Modulates the Yeast Cell Integrity Pathway. Journal of Biological Chemistry, 2004, 279, 11027-11034.                                                  | 3.4 | 68        |
| 28 | A Novel Connection between the Yeast Cdc42 GTPase and the Slt2-mediated Cell Integrity Pathway<br>Identified through the Effect of Secreted Salmonella GTPase Modulators. Journal of Biological<br>Chemistry, 2002, 277, 27094-27102.                      | 3.4 | 26        |
| 29 | Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris. Molecular Genetics and Genomics, 2001, 265, 604-614.                                                                                                                                | 2.1 | 17        |
| 30 | Choline-binding domain as a novel affinity tag for purification of fusion proteins produced inPichia pastoris. Biotechnology and Bioengineering, 2001, 74, 164-171.                                                                                        | 3.3 | 16        |
| 31 | Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway.<br>Molecular Biology of the Cell, 2001, 12, 407-419.                                                                                                     | 2.1 | 159       |
| 32 | Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an<br>Slt2-mediated increase in FKS2–lacZ expression, glucanase resistance and thermotolerance.<br>Microbiology (United Kingdom), 2000, 146, 2121-2132. | 1.8 | 237       |
| 33 | Regulatory Mechanisms for Modulation of Signaling through the Cell Integrity Slt2-mediated<br>Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 1511-1519.                                                                  | 3.4 | 316       |
| 34 | Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. EMBO Journal, 1999, 18, 4210-4221.                                                                                                                                             | 7.8 | 64        |
| 35 | 20 MAP Kinase-Mediated Signal Transduction Pathways. Methods in Microbiology, 1998, , 375-393.                                                                                                                                                             | 0.8 | 10        |
| 36 | Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Molecular Microbiology, 1997, 23, 431-444.                                                                                                       | 2.5 | 54        |

## Humberto MartÃn

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase geneSLT2(MPK1) rescued from yeast autolytic mutants. Current Genetics, 1996, 29, 516-522.          | 1.7 | 50        |
| 38 | Characterization of domains in the yeast MAP kinase Slt2 (Mpk1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Molecular Microbiology, 1995, 17, 833-842. | 2.5 | 40        |
| 39 | Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37° C.<br>Molecular Genetics and Genomics, 1993, 241-241, 177-184.                                         | 2.4 | 126       |
| 40 | Genetic Control of Fungal Cell Wall Autolysis. , 1993, , 285-294.                                                                                                                                       |     | 4         |
| 41 | A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants.<br>Molecular Microbiology, 1991, 5, 2845-2854.                                                          | 2.5 | 204       |