Humberto MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619465/publications.pdf

Version: 2024-02-01

41 papers 2,148 citations

331670 21 h-index 302126 39 g-index

41 all docs

41 docs citations

41 times ranked

1788 citing authors

#	Article	IF	CITATIONS
1	Regulatory Mechanisms for Modulation of Signaling through the Cell Integrity Slt2-mediated Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 1511-1519.	3.4	316
2	Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2–lacZ expression, glucanase resistance and thermotolerance. Microbiology (United Kingdom), 2000, 146, 2121-2132.	1.8	237
3	A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Molecular Microbiology, 1991, 5, 2845-2854.	2.5	204
4	Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway. Molecular Biology of the Cell, 2001, 12, 407-419.	2.1	159
5	Protein phosphatases in MAPK signalling: we keep learning from yeast. Molecular Microbiology, 2005, 58, 6-16.	2.5	139
6	Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at $37\hat{A}^{\circ}$ C. Molecular Genetics and Genomics, 1993, 241-241, 177-184.	2.4	126
7	Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface Sensor and the Slt2 MAPK Pathway. Journal of Biological Chemistry, 2006, 281, 39785-39795.	3.4	107
8	Reciprocal Regulation between Slt2 MAPK and Isoforms of Msg5 Dual-specificity Protein Phosphatase Modulates the Yeast Cell Integrity Pathway. Journal of Biological Chemistry, 2004, 279, 11027-11034.	3.4	68
9	Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. EMBO Journal, 1999, 18, 4210-4221.	7.8	64
10	Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. International Journal of Molecular Sciences, 2019, 20, 1709.	4.1	62
11	Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Molecular Microbiology, 1997, 23, 431-444.	2.5	54
12	Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components. Molecular and Cellular Proteomics, 2013, 12, 557-574.	3.8	52
13	Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase geneSLT2(MPK1) rescued from yeast autolytic mutants. Current Genetics, 1996, 29, 516-522.	1.7	50
14	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	7.2	47
15	Not just the wall: the other ways to turn the yeast CWI pathway on. International Microbiology, 2020, 23, 107-119.	2.4	41
16	Characterization of domains in the yeast MAP kinase Slt2 (Mpk1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Molecular Microbiology, 1995, 17, 833-842.	2.5	40
17	Fine regulation of <i>Saccharomyces cerevisiae</i> MAPK pathways by postâ€translational modifications. Yeast, 2010, 27, 503-511.	1.7	29
18	A Novel Connection between the Yeast Cdc42 GTPase and the Slt2-mediated Cell Integrity Pathway Identified through the Effect of Secreted Salmonella GTPase Modulators. Journal of Biological Chemistry, 2002, 277, 27094-27102.	3.4	26

#	Article	IF	CITATIONS
19	Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Molecular Genetics and Genomics, 2011, 285, 341-354.	2.1	25
20	Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5. Molecular Genetics and Genomics, 2009, 281, 345-359.	2.1	24
21	Wide-Ranging Effects of the Yeast Ptc1 Protein Phosphatase Acting Through the MAPK Kinase Mkk1. Genetics, 2016, 202, 141-156.	2.9	24
22	Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genetics and Biology, 2015, 77, 1-11.	2.1	21
23	Laser induced breakdown spectroscopy for the discrimination of Candida strains. Talanta, 2016, 155, 101-106.	5.5	21
24	Educating in antimicrobial resistance awareness: adaptation of the Small World Initiative program to service-learning. FEMS Microbiology Letters, $2018, 365, \ldots$	1.8	19
25	Dissecting the transcriptional activation function of the cell wall integrity MAP kinase. Yeast, 2007, 24, 335-342.	1.7	18
26	Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris. Molecular Genetics and Genomics, 2001, 265, 604-614.	2.1	17
27	Choline-binding domain as a novel affinity tag for purification of fusion proteins produced inPichia pastoris. Biotechnology and Bioengineering, 2001, 74, 164-171.	3.3	16
28	Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. International Journal of Molecular Sciences, 2021, 22, 1110.	4.1	16
29	Distinct Docking Mechanisms Mediate Interactions between the Msg5 Phosphatase and Mating or Cell Integrity Mitogen-activated Protein Kinases (MAPKs) in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 42037-42050.	3.4	15
30	Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS Journal, 2020, 287, 4881-4901.	4.7	15
31	Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. Journal of Fungi (Basel, Switzerland), 2022, 8, 368.	3.5	15
32	The <i>Salmonella </i> Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in <i>Saccharomyces cerevisiae </i> Molecular Biology of the Cell, 2012, 23, 4430-4443.	2.1	14
33	An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the Yeast Cell Wall Integrity Pathway. Journal of Biological Chemistry, 2016, 291, 5461-5472.	3.4	13
34	A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. International Microbiology, 2021, 24, 531-543.	2.4	12
35	A yeast-based genetic screen for identification of pathogenicSalmonella proteins. FEMS Microbiology Letters, 2009, 296, 167-177.	1.8	11
36	20 MAP Kinase-Mediated Signal Transduction Pathways. Methods in Microbiology, 1998, , 375-393.	0.8	10

Humberto MartÃn

#	Article	IF	CITATIONS
37	Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry. Journal of Fungi (Basel, Switzerland), 2021, 7, 647.	3.5	8
38	A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts. PLoS ONE, 2014, 9, e85390.	2.5	6
39	Genetic Control of Fungal Cell Wall Autolysis. , 1993, , 285-294.		4
40	Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. Methods in Molecular Biology, 2016, 1447, 385-398.	0.9	3
41	Fungal Signaling: from Homeostasis to Pathogenesis. International Microbiology, 2020, 23, 1-3.	2.4	0