Jorge Alberto Quillfeldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617190/publications.pdf

Version: 2024-02-01

201674 243625 67 2,185 27 44 g-index citations h-index papers 69 69 69 2115 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adolescent female rats undergo full systems consolidation of an aversive memory, while males of the same age fail to discriminate contexts Behavioral Neuroscience, 2022, 136, 172-181.	1.2	1
2	Memory Consolidation Depends on Endogenous Hippocampal Levels of Anandamide: CB1 and M4, but Possibly not TRPV1 Receptors Mediate AM404 effects. Neuroscience, 2022, 497, 53-72.	2.3	3
3	Effects of Early Life Adversities upon Memory Processes and Cognition in Rodent Models. Neuroscience, 2022, 497, 282-307.	2.3	4
4	Floor and Ceiling Effects., 2022,, 2750-2753.		0
5	Conflict Test Battery for Studying the Act of Facing Threats in Pursuit of Rewards. Frontiers in Neuroscience, 2021, 15, 645769.	2.8	5
6	Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiology of Learning and Memory, 2021, 185, 107509.	1.9	10
7	Hippocampal HECT E3 ligase inhibition facilitates consolidation, retrieval, and reconsolidation, and inhibits extinction of contextual fear memory. Neurobiology of Learning and Memory, 2020, 167, 107135.	1.9	4
8	Metaplasticity contributes to memory formation in the hippocampus. Neuropsychopharmacology, 2019, 44, 408-414.	5.4	24
9	Resilience and Vulnerability to Trauma: Early Life Interventions Modulate Aversive Memory Reconsolidation in the Dorsal Hippocampus. Frontiers in Molecular Neuroscience, 2019, 12, 134.	2.9	21
10	Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Frontiers in Synaptic Neuroscience, 2019, 11, 1.	2.5	7
11	Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course. Neurobiology of Learning and Memory, 2018, 150, 42-47.	1.9	10
12	Hippocampal plasticity mechanisms mediating experience-dependent learning change over time. Neurobiology of Learning and Memory, 2018, 150, 56-63.	1.9	8
13	Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus. Neurobiology of Learning and Memory, 2018, 151, 53-58.	1.9	13
14	HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience, 2018, 375, 108-118.	2.3	25
15	Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Molecular Neurobiology, 2018, 55, 958-967.	4.0	19
16	Floor and Ceiling Effects. , 2018, , 1-4.		0
17	Sequential learning during contextual fear conditioning guides the rate of systems consolidation: Implications for consolidation of multiple memory traces. Hippocampus, 2017, 27, 518-528.	1.9	11
18	Reconsolidationâ€induced rescue of a remote fear memory blocked by an early cortical inhibition: Involvement of the anterior cingulate cortex and the mediation by the thalamic nucleus reuniens. Hippocampus, 2017, 27, 596-607.	1.9	34

#	Article	IF	Citations
19	Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Scientific Reports, 2017, 7, 10960.	3.3	17
20	Novel learning accelerates systems consolidation of a contextual fear memory. Hippocampus, 2016, 26, 924-932.	1.9	17
21	Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Scientific Reports, 2016, 6, 22771.	3.3	61
22	The dynamic nature of systems consolidation: Stress during learning as a switch guiding the rate of the hippocampal dependency and memory quality. Hippocampus, 2016, 26, 362-371.	1.9	45
23	Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940. Neurobiology of Learning and Memory, 2016, 127, 42-47.	1.9	22
24	Behavioral Methods to Study Learning and Memory in Rats. , 2016, , 271-311.		26
25	Can previous learning alter future plasticity mechanisms?. Behavioral Neuroscience, 2016, 130, 1-5.	1.2	3
26	Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation. Scientific Reports, 2015, 5, 13633.	3.3	31
27	The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction. Learning and Memory, 2015, 22, 584-588.	1.3	24
28	Reconsolidation Allows Fear Memory to Be Updated to a Less Aversive Level through the Incorporation of Appetitive Information. Neuropsychopharmacology, 2015, 40, 315-326.	5 . 4	83
29	Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. Learning and Memory, 2014, 21, 634-645.	1.3	8
30	Muscarynic metabotropic receptor M4 modulates the hippocampal CA1 LTP possibly through local GABAergic interneurons. BMC Neuroscience, 2014, 15 , .	1.9	1
31	Reconsolidation may incorporate state-dependency into previously consolidated memories. Learning and Memory, 2013, 20, 379-387.	1.3	37
32	Reactivation enables memory updating, precision-keeping and strengthening: Exploring the possible biological roles of reconsolidation. Neuroscience, 2013, 244, 42-48.	2.3	95
33	Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism. Hippocampus, 2013, 23, 931-941.	1.9	26
34	Role of TRPV1 in consolidation of fear memories depends on the averseness of the conditioning procedure. Neurobiology of Learning and Memory, 2012, 97, 355-360.	1.9	29
35	Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus, 2012, 22, 1092-1095.	1.9	54
36	Long-Lasting Effects of Maternal Separation on an Animal Model of Post-Traumatic Stress Disorder: Effects on Memory and Hippocampal Oxidative Stress. Neurochemical Research, 2012, 37, 700-707.	3.3	63

#	Article	IF	Citations
37	Early life handling decreases serotonin turnover in the nucleus accumbens and affects feeding behavior of adult rats. Developmental Psychobiology, 2010, 52, 190-196.	1.6	5
38	Stress response recruits the hippocampal endocannabinoid system for the modulation of fear memory. Learning and Memory, 2010, 17, 202-209.	1.3	50
39	Early life experience alters behavioral responses to sweet food and accumbal dopamine metabolism. International Journal of Developmental Neuroscience, 2010, 28, 111-118.	1.6	42
40	M ₄ muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. Journal of Neuroscience Research, 2009, 87, 691-700.	2.9	27
41	Muscarinic Inhibition of Hippocampal and Striatal Adenylyl Cyclase is Mainly Due to the M4 Receptor. Neurochemical Research, 2009, 34, 1363-1371.	3.3	18
42	Effects of earlyâ€life LiClâ€Pilocarpineâ€induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein. Epilepsia, 2008, 49, 842-852.	5.1	41
43	Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience, 2008, 154, 1648-1655.	2.3	125
44	Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiology of Learning and Memory, 2008, 90, 1-9.	1.9	87
45	Glial alterations in the hippocampus of rats submitted to ibotenic-induced lesion of the nucleus basalis magnocellularis. Behavioural Brain Research, 2008, 190, 206-211.	2.2	14
46	Glucocorticoid-mediated effects of systemic oxytocin upon memory retrieval. Neurobiology of Learning and Memory, 2007, 87, 67-71.	1.9	28
47	Facilitatory effect of the intra-hippocampal pre-test administration of MT3 in the inhibitory avoidance task. Behavioural Brain Research, 2007, 177, 227-231.	2.2	15
48	Coupled map model for spatio-temporal processing in the olfactory bulb. AIP Conference Proceedings, 2007, , .	0.4	0
49	Long lasting sex-specific effects upon behavior and S100b levels after maternal separation and exposure to a model of post-traumatic stress disorder in rats. Brain Research, 2007, 1144, 107-116.	2.2	73
50	AM251, a selective antagonist of the CB1 receptor, inhibits the induction of long-term potentiation and induces retrograde amnesia in rats. Brain Research, 2006, 1075, 60-67.	2.2	74
51	Amnestic effect of intrahippocampal AM251, a CB1-selective blocker, in the inhibitory avoidance, but not in the open field habituation task, in rats. Neurobiology of Learning and Memory, 2005, 83, 119-124.	1.9	95
52	Role of hippocampal M1 and M4 muscarinic receptor subtypes in memory consolidation in the rat. Pharmacology Biochemistry and Behavior, 2003, 74, 411-415.	2.9	44
53	Reliable short-term memory in the trion model: toward a cortical language and grammar. Biological Cybernetics, 2001, 84, 173-182.	1.3	12
54	S100B infusion into the rat hippocampus facilitates memory for the inhibitory avoidance task but not for the open-field habituation. Physiology and Behavior, 2000, 71, 29-33.	2.1	35

#	Article	IF	CITATIONS
55	Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system. Toxicon, 2000, 38, 747-761.	1.6	50
56	What can toxins tell us for drug discovery?. Toxicon, 1998, 36, 1635-1640.	1.6	68
57	L-Type Voltage-Dependent Calcium Channel Blocker Nifedipine Enhances Memory Retention When Infused into the Hippocampus. Neurobiology of Learning and Memory, 1998, 69, 320-325.	1.9	54
58	Involvement of mechanisms dependent on NMDA receptors, nitric oxide and protein kinase A in the hippocampus but not in the caudate nucleus in memory. Behavioural Pharmacology, 1997, 8, 713-717.	1.7	36
59	Different Brain Areas Are Involved in Memory Expression at Different Times from Training. Neurobiology of Learning and Memory, 1996, 66, 97-101.	1.9	39
60	Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5047-5051.	7.1	109
61	CNQX infused into entorhinal cortex blocsk memory expression, and AMPA reverses the effect. Pharmacology Biochemistry and Behavior, 1994, 48, 437-440.	2.9	28
62	Effect of antagonists of platelet-activating factor receptors on memory of inhibitory avoidance in rats. Behavioral and Neural Biology, 1994, 62, 1-3.	2.2	23
63	Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats. Behavioral and Neural Biology, 1994, 61, 107-109.	2.2	67
64	Effect of the infusion of the GABA-A receptor agonist, muscimol, on the role of the entorhinal cortex, amygdala, and hippocampus in memory processes. Behavioral and Neural Biology, 1994, 61, 132-138.	2.2	35
65	Memory expression of habituation and of inhibitory avoidance is blocked by CNQX infused into the entorhinal cortex. Behavioral and Neural Biology, 1993, 60, 5-8.	2.2	26
66	Bilateral injection of fasciculin into the amygdala of rats: Effects on two avoidance tasks, acetylcholinesterase activity, and cholinergic muscarinic receptors. Pharmacology Biochemistry and Behavior, 1990, 37, 439-444.	2.9	4
67	Pre-test administration of \hat{l}^2 -endorphin, or of electroconvulsive shock reverses the memory disruptive effect of posttraining electroconvulsive shock. Peptides, 1987, 8, 605-608.	2.4	17