
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5616903/publications.pdf Version: 2024-02-01

DONCWAN YOO

#	Article	IF	CITATIONS
1	Animal coronaviruses and SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, 68, 1097-1110.	3.0	33
2	Recent Advances in PRRS Virus Receptors and the Targeting of Receptor–Ligand for Control. Vaccines, 2021, 9, 354.	4.4	17
3	Activation of NF-Î [®] B and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Scientific Reports, 2021, 11, 13464.	3.3	140
4	Inhibition of Antiviral Innate Immunity by Foot-and-Mouth Disease Virus L ^{pro} through Interaction with the N-Terminal Domain of Swine RNase L. Journal of Virology, 2021, 95, e0036121.	3.4	6
5	Transcriptional Immune Signatures of Alveolar Macrophages and the Impact of the NLRP3 Inflammasome on Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Replication. Viruses, 2020, 12, 1299.	3.3	2
6	African swine fever: Etiology, epidemiological status in Korea, and perspective on control. Journal of Veterinary Science, 2020, 21, e38.	1.3	28
7	Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Research, 2020, 286, 197980.	2.2	57
8	COVID-19 and veterinarians for one health, zoonotic- and reverse-zoonotic transmissions. Journal of Veterinary Science, 2020, 21, e51.	1.3	48
9	Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia. PeerJ, 2020, 8, e10114.	2.0	11
10	Interaction of PIAS1 with PRRS virus nucleocapsid protein mediates NF-κB activation and triggers proinflammatory mediators during viral infection. Scientific Reports, 2019, 9, 11042.	3.3	14
11	Interâ€serotype reassortment among epizootic haemorrhagic disease viruses in the United States. Transboundary and Emerging Diseases, 2019, 66, 1809-1820.	3.0	2
12	Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- <i>O</i> -Methyltransferase and the Endocytosis Signal of the Spike Protein. Journal of Virology, 2019, 93, .	3.4	35
13	Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1 Beta Interacts with Nucleoporin 62 To Promote Viral Replication and Immune Evasion. Journal of Virology, 2019, 93, .	3.4	17
14	Development of a triplex real-time RT-PCR assay for detection and differentiation of three US genotypes of porcine hemagglutinating encephalomyelitis virus. Journal of Virological Methods, 2019, 269, 13-17.	2.1	5
15	Interaction of porcine reproductive and respiratory syndrome virus major envelope proteins GP5 and M with the cellular protein Snapin. Virus Research, 2018, 249, 85-92.	2.2	8
16	Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling. Journal of Virology, 2018, 92, .	3.4	106
17	Establishment and Characterization of a High and Stable Porcine CD163-Expressing MARC-145 Cell Line. BioMed Research International, 2018, 2018, 1-9.	1.9	4
18	Type I interferon suppression-negative and host mRNA nuclear retention-negative mutation in nsp1β confers attenuation of porcine reproductive and respiratory syndrome virus in pigs. Virology, 2018, 517, 177-187.	2.4	15

#	Article	IF	CITATIONS
19	Nuclear imprisonment of host cellular mRNA by nsp1î² protein of porcine reproductive and respiratory syndrome virus. Virology, 2017, 505, 42-55.	2.4	21
20	Reverse Genetics for Porcine Reproductive and Respiratory Syndrome Virus. Methods in Molecular Biology, 2017, 1602, 29-46.	0.9	9
21	The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Veterinary Microbiology, 2017, 209, 75-89.	1.9	34
22	Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion. Virology, 2017, 510, 111-126.	2.4	52
23	Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling. Virus Research, 2016, 226, 128-141.	2.2	111
24	Nuclear export signal of PRRSV NSP1α is necessary for type I IFN inhibition. Virology, 2016, 499, 278-287.	2.4	24
25	Synergy of TLR3 and 7 ligands significantly enhances function of DCs to present inactivated PRRSV antigen through TRIF/MyD88-NF-I®B signaling pathway. Scientific Reports, 2016, 6, 23977.	3.3	43
26	Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake. Microbes and Environments, 2016, 31, 173-177.	1.6	35
27	Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 2016, 489, 252-268.	2.4	148
28	Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus Suppresses Both MAVS and RIG-I Expression as One of the Mechanisms to Antagonize Type I Interferon Production. PLoS ONE, 2016, 11, e0168314.	2.5	52
29	PRRS virus receptors and their role for pathogenesis. Veterinary Microbiology, 2015, 177, 229-241.	1.9	100
30	Animal Arterivirus Infections. BioMed Research International, 2014, 2014, 1-2.	1.9	5
31	Equine Arteritis Virus Does Not Induce Interferon Production in Equine Endothelial Cells: Identification of Nonstructural Protein 1 as a Main Interferon Antagonist. BioMed Research International, 2014, 2014, 1-13.	1.9	14
32	Differential Host Cell Gene Expression and Regulation of Cell Cycle Progression by Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus. BioMed Research International, 2014, 2014, 1-13.	1.9	23
33	Engineering the PRRS virus genome: Updates and perspectives. Veterinary Microbiology, 2014, 174, 279-295.	1.9	50
34	Modulation of innate immune signaling by nonstructural protein 1 (nsp1) in the family Arteriviridae. Virus Research, 2014, 194, 100-109.	2.2	31
35	3C ^{pro} of Foot-and-Mouth Disease Virus Antagonizes the Interferon Signaling Pathway by Blocking STAT1/STAT2 Nuclear Translocation. Journal of Virology, 2014, 88, 4908-4920.	3.4	83
36	Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses. Virology, 2014, 458-459, 136-150.	2.4	21

#	Article	IF	CITATIONS
37	The spread of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in North America: A phylogeographic approach. Virology, 2013, 447, 146-154.	2.4	45
38	Degradation of CREB-binding protein and modulation of type I interferon induction by the zinc finger motif of the porcine reproductive and respiratory syndrome virus nsp11± subunit. Virus Research, 2013, 172, 54-65.	2.2	53
39	Characterization of the microRNAome in Porcine Reproductive and Respiratory Syndrome Virus Infected Macrophages. PLoS ONE, 2013, 8, e82054.	2.5	42
40	Interplay between Interferon-Mediated Innate Immunity and Porcine Reproductive and Respiratory Syndrome Virus. Viruses, 2012, 4, 424-446.	3.3	149
41	Evaluation of a DNA vaccine candidate co-expressing GP3 and GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) with interferon I±/l³ in immediate and long-lasting protection against HP-PRRSV challenge. Virus Genes, 2012, 45, 474-487.	1.6	17
42	Role of porcine reproductive and respiratory syndrome virus nucleocapsid protein in induction of interleukin-10 and regulatory T-lymphocytes (Treg). Journal of General Virology, 2012, 93, 1236-1246.	2.9	66
43	Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology, 2012, 424, 18-32.	2.4	24
44	Antiviral Activity of Tilmicosin for Type 1 and Type 2 Porcine Reproductive And Respiratory Syndrome Virus In Cultured Porcine Alveolar Macrophages. Journal of Antivirals & Antiretrovirals, 2011, 03, .	0.1	5
45	Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology, 2010, 402, 315-326.	2.4	118
46	Nonstructural protein 11± subunit-based inhibition of NF-1ºB activation and suppression of interferon-1² production by porcine reproductive and respiratory syndrome virus. Virology, 2010, 407, 268-280.	2.4	91
47	Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth. Virus Research, 2010, 147, 294-299.	2.2	29
48	Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Research, 2010, 154, 48-60.	2.2	120
49	Interaction of the porcine reproductive and respiratory syndrome virus nucleocapsid protein with the inhibitor of MyoD family-a domain-containing protein. Biological Chemistry, 2009, 390, 215-223.	2.5	19
50	Use of recombinant S1 spike polypeptide to develop a TCoV-specific antibody ELISA. Veterinary Microbiology, 2009, 138, 281-288.	1.9	14
51	Porcine reproductive and respiratory syndrome virus as a vector: Immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology, 2009, 389, 91-99.	2.4	45
52	The lactate dehydrogenase-elevating virus capsid protein is a nuclear–cytoplasmic protein. Archives of Virology, 2009, 154, 1071-1080.	2.1	6
53	Genetic variation and pathogenicity of highly virulent porcine reproductive and respiratory syndrome virus emerging in China. Archives of Virology, 2009, 154, 1589-1597.	2.1	48
54	Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Research, 2009, 140, 161-171.	2.2	73

#	Article	IF	CITATIONS
55	Evaluation of porcine reproductive and respiratory syndrome virus replication in laboratory rodents. Canadian Journal of Veterinary Research, 2009, 73, 313-8.	0.2	1
56	Porcine plasma ficolin binds and reduces infectivity of porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Antiviral Research, 2008, 77, 28-38.	4.1	20
57	Functional mapping of the porcine reproductive and respiratory syndrome virus capsid protein nuclear localization signal and its pathogenic association. Virus Research, 2008, 135, 107-114.	2.2	54
58	Seroprevalence of Turkey Coronavirus in North American Turkeys Determined by a Newly Developed Enzyme-Linked Immunosorbent Assay Based on Recombinant Antigen. Vaccine Journal, 2008, 15, 1839-1844.	3.1	15
59	Cloning of a gene fragment encoding bovine complement component C3d with expression and characterization of derived fusion proteins. Veterinary Immunology and Immunopathology, 2006, 114, 61-71.	1.2	7
60	Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology, 2006, 346, 238-250.	2.4	82
61	The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. Virology, 2006, 355, 30-43.	2.4	73
62	The Nuclear Localization Signal of the Prrs Virus Nucleocapsid Protein Modulates Viral Replication in vitro and Antibody Response in vivo. Advances in Experimental Medicine and Biology, 2006, 581, 145-148.	1.6	12
63	A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology, 2005, 331, 47-62.	2.4	74
64	Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity. Journal of General Virology, 2005, 86, 3091-3096.	2.9	29
65	Infectious cDNA clones of porcine reproductive and respiratory syndrome virus and their potential as vaccine vectors. Veterinary Immunology and Immunopathology, 2004, 102, 143-154.	1.2	43
66	Differential host cell gene expression regulated by the porcine reproductive and respiratory syndrome virus GP4 and GP5 glycoproteins. Veterinary Immunology and Immunopathology, 2004, 102, 189-198.	1.2	25
67	Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates. Veterinary Immunology and Immunopathology, 2004, 102, 277-290.	1.2	30
68	Characterization of the porcine reproductive and respiratory syndrome virus glycoprotein 5 (GP5) in stably expressing cells. Virus Research, 2004, 104, 33-38.	2.2	23
69	Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus. Virology, 2003, 316, 135-145.	2.4	54
70	Common RNA replication signals exist among group 2 coronaviruses: evidence for in vivo recombination between animal and human coronavius molecules. Virology, 2003, 315, 174-183.	2.4	38
71	Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Research, 2003, 95, 23-33.	2.2	92
72	Homo-Oligomerization of the Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein and the Role of Disulfide Linkages. Journal of Virology, 2003, 77, 4546-4557.	3.4	87

#	Article	IF	CITATIONS
73	Colocalization and Interaction of the Porcine Arterivirus Nucleocapsid Protein with the Small Nucleolar RNA-Associated Protein Fibrillarin. Journal of Virology, 2003, 77, 12173-12183.	3.4	96
74	Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus. Biochemical Journal, 2003, 376, 269-275.	3.7	29
75	Phosphorylation of the Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein. Journal of Virology, 2002, 76, 10569-10576.	3.4	63
76	Genetic Characterization and Sequence Heterogeneity of a Canadian Isolate of Swine Hepatitis E Virus. Journal of Clinical Microbiology, 2002, 40, 4021-4029.	3.9	55
77	Cloning and Expression of Human Rotavirus Spike Protein, VP8*, in Escherichia coli. Biochemical and Biophysical Research Communications, 2001, 282, 1183-1188.	2.1	28
78	Prevalence of Hepatitis E Virus Antibodies in Canadian Swine Herds and Identification of a Novel Variant of Swine Hepatitis E Virus. Vaccine Journal, 2001, 8, 1213-1219.	2.6	83
79	Antigenic Importance of the Carboxy-Terminal Beta-Strand of the Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein. Vaccine Journal, 2001, 8, 598-603.	2.6	34
80	A Single Amino Acid Change within Antigenic Domain II of the Spike Protein of Bovine Coronavirus Confers Resistance to Virus Neutralization. Vaccine Journal, 2001, 8, 297-302.	2.6	53
81	Full-Length Genomic Sequence of Bovine Coronavirus (31kb). Advances in Experimental Medicine and Biology, 2001, , 73-76.	1.6	8
82	Homotypic Interactions of the Nucleocapsid Protein of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Advances in Experimental Medicine and Biology, 2001, 494, 627-632.	1.6	4
83	Targeted RNA recombination of the membrane and nucleocapsid protein genes between mouse hepatitis virus and bovine coronavirus. Journal of Veterinary Science, 2001, 2, 149.	1.3	0
84	Primary Structure of the Sialodacryoadenitis Virus Genome: Sequence of the Structural-Protein Region and Its Application for Differential Diagnosis. Vaccine Journal, 2000, 7, 568-573.	2.6	18
85	Prevalence of antibodies to the hepatitis E virus in pigs from countries where hepatitis E is common or is rare in the human population. Journal of Medical Virology, 1999, 59, 297-302.	5.0	164
86	Functional Characterization of Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins Expressed by Adenovirus Recombinants. Intervirology, 1998, 41, 253-260.	2.8	4
87	Antigenic Structure of the Nucleocapsid Protein of Porcine Reproductive and Respiratory Syndrome Virus. Vaccine Journal, 1998, 5, 773-779.	2.6	72
88	Maternal Immunization of Pregnant Cattle with Recombinant VP8* Protein of Bovine Rotavirus Elicits Neutralizing Antibodies to Multiple Serotypes. Advances in Experimental Medicine and Biology, 1997, 412, 405-411.	1.6	11
89	Induction of Systemic and Mucosal Immune Responses in Cotton Rats Immunized with Human Adenovirus Type 5 Recombinants Expressing the Full and Truncated Forms of Bovine Herpesvirus Type 1 Glycoprotein gD. Virology, 1996, 222, 299-309.	2.4	37
90	Zinc-Binding of the Cysteine-Rich Domain Encoded in the Open Reading Frame 1B of the RNA Polymerase Gene of Coronavirus. Advances in Experimental Medicine and Biology, 1995, 380, 437-442.	1.6	5

#	Article	IF	CITATIONS
91	The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology, 1991, 180, 395-399.	2.4	54
92	Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology, 1991, 183, 91-98.	2.4	23
93	Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells. Virology, 1990, 179, 121-128.	2.4	14
94	The Haemagglutinin of Bovine Coronavirus Exhibits Significant Similarity to the Haemagglutinin of Type C Influenza Virus. Advances in Experimental Medicine and Biology, 1990, 276, 103-108.	1.6	1
95	Nudeotide sequence of the M segment of the genomic RNA of Hantaan virus 76–118. Nucleic Acids Research, 1987, 15, 6299-6299.	14.5	31