
Lee-Anne M Manning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5616712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile Constituents of Fermented Sugar Baits and Their Attraction to Lepidopteran Species. Journal of Agricultural and Food Chemistry, 2005, 53, 953-958.	5.2	70

 $_{2}$ Efficacy of the pear ester as a monitoring tool for codling mothCydia pomonella (Lepidoptera:) Tj ETQq0 0 0 rgBT / $\frac{3}{2.4}$ rlock 10 Tf 50 702

3	Volatiles from Apple Trees Infested with Light Brown Apple Moth Larvae Attract the Parasitoid Dolichogenidia tasmanica. Journal of Agricultural and Food Chemistry, 2012, 60, 9562-9566.	5.2	40
4	Pheromone Disruption of Argentine Ant Trail Integrity. Journal of Chemical Ecology, 2008, 34, 1602-1609.	1.8	35
5	Chrysanthemyl 2-acetoxy-3-methylbutanoate: the sex pheromone of the citrophilous mealybug, Pseudococcus calceolariae. Tetrahedron Letters, 2010, 51, 1075-1078.	1.4	29
6	Attraction of New Zealand Flower Thrips, Thrips obscuratus, to cis-Jasmone, a Volatile Identified from Japanese Honeysuckle Flowers. Journal of Chemical Ecology, 2009, 35, 656-663.	1.8	28
7	New Sex Pheromone Blend for the Lightbrown Apple Moth, Epiphyas postvittana. Journal of Chemical Ecology, 2011, 37, 640-646.	1.8	27
8	Attraction and antennal response of the common wasp, <i>Vespula vulgaris</i> (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science, 2009, 65, 975-981.	3.4	24
9	Apple Volatiles Synergize the Response of Codling Moth to Pear Ester. Journal of Chemical Ecology, 2013, 39, 643-652.	1.8	23
10	Identification Of Sex Pheromone Components Of The Painted Apple Moth: A Tussock Moth With A Thermally Labile Pheromone Component. Journal of Chemical Ecology, 2005, 31, 621-646.	1.8	21
11	Attractiveness and competitiveness of irradiated light brown apple moths. Entomologia Experimentalis Et Applicata, 2013, 148, 203-212.	1.4	21
12	Trapping <i>Dasinuera mali</i> (Diptera: Cecidomyiidae) in Apples. Journal of Economic Entomology, 2007, 100, 745-751.	1.8	19
13	Trapping Dasinuera mali (Diptera: Cecidomyiidae) in Apples. Journal of Economic Entomology, 2007, 100, 745-751.	1.8	19
14	Floral Scent of Canada Thistle and Its Potential as a Generic Insect Attractant. Journal of Economic Entomology, 2008, 101, 720-727.	1.8	18
15	Identification of the sex pheromone of Conogethes pluto: a pest of Alpinia. Chemoecology, 2013, 23, 93-101.	1.1	17
16	Development of singleâ€dispenser pheromone suppression of <i>Epiphyas postvittana, Planotortrix octo</i> and <i>Ctenopseustis obliquana</i> in New Zealand stone fruit orchards. Pest Management Science, 2012, 68, 928-934.	3.4	16
17	Volatiles from greenâ€lipped mussel as a lead to vespid wasp attractants. Journal of Applied Entomology, 2014, 138, 87-95.	1.8	16

Floral attractants for the female soybean looper, $\langle i \rangle$ Thysanoplusia orichalcea $\langle i \rangle$ (Lepidoptera:) Tj ETQq0 0 0 rgBT $\stackrel{O}{3.4}$ erlock 10 Tf 50 62

#	Article	IF	CITATIONS
19	Electrophysiological and Behavioral Responses of Queensland Fruit Fly Females to Fruit Odors. Journal of Chemical Ecology, 2020, 46, 176-185.	1.8	10
20	Early detection of fruit infested with Bactrocera tryoni. Postharvest Biology and Technology, 2021, 175, 111496.	6.0	4
21	Developing a mealybug pheromone monitoring tool to enhance IPM practices in New Zealand vineyards. Journal of Pest Science, 2023, 96, 29-39.	3.7	3
22	Thigmotaxis Mediates Trail Odour Disruption. Scientific Reports, 2017, 7, 1670.	3.3	2
23	Development of an efficient trapping system for New Zealand flower thrips, <i>Thrips obscuratus</i> . Pest Management Science, 2015, 71, 309-315.	3.4	1