Eakalak Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5616085/publications.pdf

Version: 2024-02-01

188 papers 4,920 citations

94433 37 h-index 62 g-index

189 all docs

189 docs citations

times ranked

189

5378 citing authors

#	Article	IF	CITATIONS
1	Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. Environmental Science and Pollution Research, 2023, 30, 8916-8927.	5.3	5
2	Bromate formation control by enhanced ozonation: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1154-1198.	12.8	5
3	Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Critical Reviews in Environmental Science and Technology, 2022, 52, 2611-2660.	12.8	45
4	Reactivity characterization of SiO2-coated nano zero-valent iron for iodoacetamide degradation: The effects of SiO2 thickness, and the roles of dehalogenation, hydrolysis and adsorption. Chemosphere, 2022, 286, 131816.	8.2	6
5	Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation. Environmental Pollution, 2022, 292, 118412.	7.5	11
6	Characterization of dissolved organic carbon and disinfection by-products in biochar filter leachate using orbitrap mass spectrometry. Journal of Hazardous Materials, 2022, 424, 127691.	12.4	5
7	Examining hydraulic fracturing chemicals: A temporal and comparative analysis. Water Research, 2022, 208, 117878.	11.3	2
8	Phytoplankton community interactions and cyanotoxin mixtures in three recurring surface blooms within one lake. Journal of Hazardous Materials, 2022, 427, 128142.	12.4	5
9	Stoichiometric carbocatalysis via epoxide-like Câ^'Sâ^'O configuration on sulfur-doped biochar for environmental remediation. Journal of Hazardous Materials, 2022, 428, 128223.	12.4	25
10	Influence of ammonia and NaCl on nitrifying community and activity: Implications for formulating nitrifying culture augmentation. Science of the Total Environment, 2022, 833, 155132.	8.0	5
11	Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar. Chemosphere, 2022, 299, 134426.	8.2	9
12	Nitrogen transformation in slightly polluted surface water by a novel biofilm reactor: Long-term performance and microbial population characteristics. Science of the Total Environment, 2022, 829, 154623.	8.0	3
13	Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 3016-3048.	12.8	18
14	Performance indicators for a holistic evaluation of catalyst-based degradationâ€"A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 2021, 402, 123460.	12.4	26
15	Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 2021, 405, 126806.	12.7	234
16	Biofiltration for treatment of recent emerging contaminants in water: Current and future perspectives. Water Environment Research, 2021, 93, 972-992.	2.7	21
17	Hydraulic Fracturing Chemical Disclosure Policy and Data Analysis: Metrics and Trends in Transparency. Environmental Science &	10.0	3
18	A Novel Jumbo Phage PhiMaO5 Inhibits Harmful Microcystis sp Frontiers in Microbiology, 2021, 12, 660351.	3.5	13

#	Article	IF	CITATIONS
19	Investigating organic nitrogen production in activated sludge process: Size fraction and biodegradability. Science of the Total Environment, 2021, 773, 145695.	8.0	2
20	Photolytic fate of (E)- and (Z)-endoxifen in water and treated wastewater exposed to sunlight. Environmental Research, 2021, 197, 111121.	7. 5	0
21	Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. Environmental Research, 2021, 197, 111091.	7.5	44
22	Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char. International Journal of Environmental Research and Public Health, 2021, 18, 6878.	2.6	16
23	Effects of cathode coating materials and operational time on the mercury removal performance of electrokinetic remediation system for marine sediment. Journal of Environmental Management, 2021, 288, 112443.	7.8	5
24	Production and removal of soluble organic nitrogen by nitrifying biofilm. Journal of Environmental Chemical Engineering, 2021, 9, 105440.	6.7	2
25	Trihalomethanes in Water Supply System and Water Distribution Networks. International Journal of Environmental Research and Public Health, 2021, 18, 9066.	2.6	2
26	Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk. Journal of Hazardous Materials, 2021, 415, 125560.	12.4	6
27	Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil. Rhizosphere, 2021, 19, 100383.	3.0	7
28	Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand. Toxins, 2021, 13, 631.	3.4	2
29	Systemic risk analyses for potential impacts of onshore unconventional oil and gas development on public health and the environment: A critical review. Science of the Total Environment, 2021, 786, 147512.	8.0	4
30	Biobased materials as potential precursors for disinfection by-products in water. Journal of Environmental Chemical Engineering, 2021, 9, 106032.	6.7	1
31	Biodegradation of paraquat by Pseudomonas putida and Bacillus subtilis immobilized on ceramic with supplemented wastewater sludge. Environmental Pollution, 2021, 286, 117307.	7.5	11
32	GenX is not always a better fluorinated organic compound than PFOA: A critical review on aqueous phase treatability by adsorption and its associated cost. Water Research, 2021, 205, 117683.	11.3	20
33	Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. Environmental Pollution, 2021, 289, 117825.	7.5	10
34	Interactions between natural organic matter fractions and nanoscale zero-valent iron. Science of the Total Environment, 2021, 796, 148954.	8.0	12
35	Photodegradation of (E)- and (Z)-Endoxifen in water by ultraviolet light: Efficiency, kinetics, by-products, and toxicity assessment. Water Research, 2020, 171, 115451.	11.3	6
36	Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. Journal of Hazardous Materials, 2020, 384, 121321.	12.4	16

3

#	Article	IF	CITATIONS
37	Nonpoint source versus point source water pollution. Water Environment Research, 2020, 92, 1864-1865.	2.7	1
38	Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 2020, 186, 116303.	11.3	248
39	Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. Water (Switzerland), 2020, 12, 2756.	2.7	29
40	Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Science of the Total Environment, 2020, 736, 139515.	8.0	102
41	Virgin (Fe0) and microbially regenerated (Fe2+) iron turning waste for treating chlorinated pesticides in water. Journal of Hazardous Materials, 2020, 398, 122980.	12.4	12
42	Microplastics as pollutants in agricultural soils. Environmental Pollution, 2020, 265, 114980.	7. 5	359
43	Abundance and activity of ammonia oxidizing archaea and bacteria in bulk water and biofilm in water supply systems practicing chlorination and chloramination: Full and laboratory scale investigations. Science of the Total Environment, 2020, 715, 137043.	8.0	13
44	Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. Science of the Total Environment, 2020, 713, 136708.	8.0	54
45	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. Chemical Engineering Journal, 2020, 388, 124243.	12.7	29
46	Inhibitory effect of phenol on wastewater ammonification. Bioresource Technology, 2020, 309, 123312.	9.6	15
47	Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. Environmental Research, 2020, 185, 109454.	7.5	8
48	Dissolved oxygen/free ammonia (DO/FA) ratio manipulation to gain distinct proportions of nitrogen species in effluent of entrapped-cell-based reactors. Journal of Environmental Management, 2019, 251, 109541.	7.8	12
49	Phytoplankton community and algal toxicity at a recurring bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA. Scientific Reports, 2019, 9, 16129.	3.3	19
50	Current progress in treatment techniques of triclosan from wastewater: A review. Science of the Total Environment, 2019, 696, 133990.	8.0	39
51	Microbial Perspective of NZVI Applications. , 2019, , 387-413.		0
52	Iron turning waste media for treating Endosulfan and Heptachlor contaminated water. Science of the Total Environment, 2019, 685, 124-133.	8.0	18
53	Emerging contaminants in wastewater, stormwater runoff, and surface water: Application as chemical markers for diffuse sources. Science of the Total Environment, 2019, 676, 252-267.	8.0	143
54	Entrapped-cells-based anaerobic forward osmosis membrane bioreactor treating medium-strength domestic wastewater: Fouling characterization and performance evaluation. Chemosphere, 2019, 225, 226-237.	8.2	15

#	Article	IF	Citations
55	Phage shock protein and gene responses of Escherichia coli exposed to carbon nanotubes. Chemosphere, 2019, 224, 461-469.	8.2	15
56	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Science of the Total Environment, 2019, 664, 312-321.	8.0	92
57	Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. Chemosphere, 2019, 223, 455-464.	8.2	51
58	Editorial. Water Environment Research, 2019, 91, 1564-1564.	2.7	0
59	A sustainable solution for removal of glutaraldehyde in saline water with visible light photocatalysis. Chemosphere, 2019, 220, 1083-1090.	8.2	10
60	Microbial communities in Bakken region produced water. FEMS Microbiology Letters, 2018, 365, .	1.8	27
61	Photolysis of glutaraldehyde in brine: A showcase study for removal of a common biocide in oil and gas produced water. Journal of Hazardous Materials, 2018, 353, 254-260.	12.4	14
62	Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale. Science of the Total Environment, 2018, 626, 867-874.	8.0	21
63	Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere, 2018, 196, 9-17.	8.2	45
64	Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. Science of the Total Environment, 2018, 615, 498-507.	8.0	55
65	<i>Cryptosporidium</i> infecting wild cricetid rodents from the subfamilies Arvicolinae and Neotominae. Parasitology, 2018, 145, 326-334.	1.5	14
66	Thermal remediation alters soil properties – a review. Journal of Environmental Management, 2018, 206, 826-835.	7.8	126
67	Daytime Surface Energy Fluxes over Soil Material Remediated Using Thermal Desorption., 2018, 1, 1-9.		1
68	Testing the limits of TN removal technology - Investigating soluble organic nitrogen generation in a biological wastewater treatment process. Proceedings of the Water Environment Federation, 2018, 2018, 599-614.	0.0	0
69	Impact of operations and cleaning on membrane fouling at a wastewater reclamation facility. Journal of Environmental Management, 2017, 193, 326-333.	7.8	9
70	Sustainability likelihood of remediation options for metal-contaminated soil/sediment. Chemosphere, 2017, 174, 421-427.	8.2	19
71	Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Chemosphere, 2017, 176, 315-323.	8.2	93
72	Holistic risk assessment of surface water contamination due to Pb-210 in oil produced water from the Bakken Shale. Chemosphere, 2017, 169, 627-635.	8.2	14

#	Article	IF	Citations
73	Fouling characterization in entrapped cells-based-membrane bioreactor treating wastewater. Separation and Purification Technology, 2017, 175, 321-329.	7.9	16
74	Perceived risks of produced water management and naturally occurring radioactive material content in North Dakota. Journal of Environmental Management, 2017, 196, 56-62.	7.8	8
75	Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology, 2017, 168, 266-275.	2.1	66
76	Trichloroethene removal by separately encapsulated and co-encapsulated bacterial degraders and nanoscale zero-valent iron. International Biodeterioration and Biodegradation, 2017, 125, 269-276.	3.9	13
77	Seasonal variation and ex-situ nitrification activity of ammonia oxidizing archaea in biofilm based wastewater treatment processes. Bioresource Technology, 2017, 244, 850-859.	9.6	52
78	Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure. Chemosphere, 2017, 187, 147-155.	8.2	32
79	Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. Chemosphere, 2017, 188, 199-207.	8.2	28
80	Nutrient balancing for phytoremediation enhancement of urea manufacturing raw wastewater. Journal of Environmental Management, 2017, 202, 225-231.	7.8	4
81	Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons. Chemosphere, 2017, 186, 695-701.	8.2	18
82	Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques. Current Pollution Reports, 2017, 3, 192-205.	6.6	43
83	Membrane Alterations in <i>Pseudomonas putida</i> F1 Exposed to Nanoscale Zerovalent Iron: Effects of Short-Term and Repetitive nZVI Exposure. Environmental Science & Environ	10.0	39
84	Binary Exchanges of Calcium, Magnesium, and Potassium on Thermally Desorbed Soil. Soil Science Society of America Journal, 2017, 81, 1088-1095.	2.2	4
85	Performances and Fouling of Entrapped-Cells-Based Anaerobic Forward Osmosis Membrane Bioreactor. Proceedings of the Water Environment Federation, 2017, 2017, 5467-5481.	0.0	0
86	Glutaraldehyde Removal from Produced Waters Using Visible Light Driven Photocatalysis. Proceedings of the Water Environment Federation, 2017, 2017, 5312-5331.	0.0	0
87	Inhibitions of cadmium and combined cadmium-copper on nitrification by attached and suspended growth mixed cultures containing ammonia oxidizing archaea. Proceedings of the Water Environment Federation, 2017, 2017, 4054-4059.	0.0	0
88	A Sustainable Rural Food–Energy–Water Nexus Framework for the Northern Great Plains. Agricultural and Environmental Letters, 2016, 1, 160008.	1.2	2
89	Evaluation Of Copper(II) Effect on Ammonia Oxidizing Archaea in Attached and Suspended Growth Nitrifiers by Inhibiting Ammonia Oxidizing Bacteria. Proceedings of the Water Environment Federation, 2016, 2016, 4569-4585.	0.0	0
90	Photodegradation of haloacetonitriles in water by vacuum ultraviolet irradiation: Mechanisms and intermediate formation. Water Research, 2016, 98, 160-167.	11.3	42

#	Article	IF	Citations
91	Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Science of the Total Environment, 2016, 565, 857-862.	8.0	31
92	Mitigation of bactericidal effect of carbon nanotubes by cell entrapment. Science of the Total Environment, 2016, 565, 787-794.	8.0	8
93	Mercury capture from natural gas by carbon supported ionic liquids: Synthesis, evaluation and molecular mechanism. Fuel, 2016, 177, 296-303.	6.4	30
94	Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater. Water Research, 2016, 92, 44-51.	11.3	39
95	Cryptosporidium galli and novel Cryptosporidium avian genotype VI in North American red-winged blackbirds (Agelaius phoeniceus). Parasitology Research, 2016, 115, 1901-1906.	1.6	25
96	Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere, 2016, 144, 352-359.	8.2	71
97	A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, 2016, 539, 478-493.	8.0	121
98	Glutaraldehyde Removal from Flowback and Produced Waters using Photolysis. Proceedings of the Water Environment Federation, 2016, 2016, 2448-2457.	0.0	1
99	Bioavailability of Phosphorus Species in Secondary Effluents. Proceedings of the Water Environment Federation, 2016, 2016, 5479-5494.	0.0	0
100	Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus). Infection, Genetics and Evolution, 2015, 32, 113-123.	2.3	21
101	Stability and Performance of Physically Immobilized Ionic Liquids for Mercury Adsorption from a Gas Stream. Industrial & Description of Physically Immobilized Ionic Liquids for Mercury Adsorption from a Gas	3.7	16
102	The effect of single-walled carbon nanotubes on Escherichia coli: multiple indicators of viability. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	9
103	Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. Journal of Hazardous Materials, 2015, 290, 127-133.	12.4	58
104	Removal of aqueous cyanide with strongly basic ion-exchange resin. Environmental Technology (United Kingdom), 2015, 36, 1612-1622.	2.2	15
105	North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes. Infection, Genetics and Evolution, 2015, 36, 287-293.	2.3	28
106	Sorption and degradation of $17\hat{l}^2$ -estradiol-17-sulfate in sterilized soilâ \in "water systems. Chemosphere, 2015, 119, 1322-1328.	8.2	27
107	Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing. PLoS ONE, 2015, 10, e0128043.	2.5	20
108	Biodegradation of Dissolved Organic Nitrogen under Different Biological Wastewater Treatment Process Conditions. Proceedings of the Water Environment Federation, 2015, 2015, 6047-6060.	0.0	1

#	Article	IF	Citations
109	Solids Retention Time as a Control Parameter for Organic Nitrogen. Proceedings of the Water Environment Federation, 2015, 2015, 2839-2854.	0.0	0
110	Sensitivity of Phosphorus Bioavailability Tests to Algal Species. Proceedings of the Water Environment Federation, 2015, 2015, 5731-5749.	0.0	0
111	Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors. Bioresource Technology, 2014, 164, 254-263.	9.6	22
112	Mitigation of nitrification inhibition by silver nanoparticles using cell entrapment technique. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	8
113	Template free method for the synthesis of Ag–PPy core–shell nanospheres with inherent colloidal stability. Synthetic Metals, 2014, 197, 134-143.	3.9	15
114	Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation. Water Research, 2014, 54, 318-326.	11.3	18
115	Reduction Of Bactericidal Effect Of Functionalized Carbon Nanotubes By Cell Entrapment. Proceedings of the Water Environment Federation, 2014, 2014, 7087-7101.	0.0	0
116	The Effect Of Sludge Age On Biokinetic Coefficients. Proceedings of the Water Environment Federation, 2014, 2014, 3794-3798.	0.0	1
117	Seasonal Variation of Archaeal <i>amoA</i> In Two-Stage Trickling Filter and Moving Bed Bioreactor Systems. Proceedings of the Water Environment Federation, 2014, 2014, 239-253.	0.0	0
118	Enricher reactor – Permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions. Bioresource Technology, 2013, 146, 336-344.	9.6	6
119	Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants. Water Research, 2013, 47, 3201-3210.	11.3	77
120	Dissipation and transformation of 17β-estradiol-17-sulfate in soil–water systems. Journal of Hazardous Materials, 2013, 260, 733-739.	12.4	25
121	Overlapping Photodegradable and Biodegradable Organic Nitrogen in Wastewater Effluents. Environmental Science & Environmental	10.0	27
122	Effect of carbon source during enrichment on BTEX degradation by anaerobic mixed bacterial cultures. Biodegradation, 2013, 24, 279-293.	3.0	7
123	Total Nitrogen Removal by Reverse Osmosis: Role of Biodegradable Dissolved Organic Nitrogen. Proceedings of the Water Environment Federation, 2013, 2013, 242-256.	0.0	1
124	Urea Responsible for Aggregation in Bacterial Strains Commonly Found in Activated Sludge. Proceedings of the Water Environment Federation, 2013, 2013, 5163-5171.	0.0	0
125	Evidence that Cryptosporidium parvum Populations Are Panmictic and Unstructured in the Upper Midwest of the United States. Applied and Environmental Microbiology, 2012, 78, 8096-8101.	3.1	45
126	Effects of Operational and Cleaning Practices on Membrane Fouling during the Reclamation of Secondary Effluent from a Wastewater Treatment Plant. Proceedings of the Water Environment Federation, 2012, 2012, 5255-5269.	0.0	0

#	Article	IF	CITATIONS
127	A Novel Application of Enricher Reactor - Permeable Reactive Biobarrier for Removing a Mixture of Contaminants with Substrate Interactions. Proceedings of the Water Environment Federation, 2012, 2012, 6524-6540.	0.0	0
128	Reintroduction of Contaminant in Groundwater Alters Bacterial Community. Proceedings of the Water Environment Federation, 2012, 2012, 6515-6523.	0.0	0
129	Fate of dissolved organic nitrogen in two stage trickling filter process. Water Research, 2012, 46, 5115-5126.	11.3	49
130	Bromate Formation by Ozone-VUV in Comparison with Ozone and Ozone-UV: Effects of pH, Ozone Dose, and VUV Power. Journal of Environmental Engineering, ASCE, 2011, 137, 187-195.	1.4	26
131	Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 2011, 13, 6673-6681.	1.9	65
132	Field Study of Catch Basin Inserts for the Removal of Pollutants from Urban Runoff. Water Resources Management, 2011, 25, 1205-1217.	3.9	14
133	Sorption, Fate, and Mobility of Sulfonamides in Soils. Water, Air, and Soil Pollution, 2011, 218, 49-61.	2.4	45
134	Effects of entrapment on nucleic acid content, cell morphology, cell surface property, and stress of pure cultures commonly found in biological wastewater treatment. Applied Microbiology and Biotechnology, 2011, 92, 407-418.	3.6	9
135	A new method to determine initial viability of entrapped cells using fluorescent nucleic acid staining. Bioresource Technology, 2011, 102, 1622-1627.	9.6	14
136	Effects of cell entrapment on nucleic acid content and microbial diversity of mixed cultures in biological wastewater treatment. Bioresource Technology, 2011, 102, 3176-3183.	9.6	12
137	Effects of field-manure applications on stratified $17\hat{l}^2$ -estradiol concentrations. Journal of Hazardous Materials, 2011, 192, 748-752.	12.4	23
138	Diffusion and Treatability Studies with Biopolymer Encapsulated Zero-Valent Iron Nanoparticles. , $2011, , .$		0
139	Fate of Bioavailable and Biodegradable Dissolved Organic Nitrogen in a Two-Stage Trickling Filter Wastewater Treatment Plant. Proceedings of the Water Environment Federation, 2011, 2011, 6655-6672.	0.0	0
140	Role of Manure Application on Soil in Preventing Groundwater Contamination by <1>Cryptosporidium 1 . Proceedings of the Water Environment Federation, 2011, 2011, 7005-7015.	0.0	0
141	Modeling a Two-Stage Trickling Filter Wastewater Treatment Plant to Simulate the Fate of Dissolved Organic Nitrogen and Its Biodegradability. Proceedings of the Water Environment Federation, 2011, 2011, 6638-6654.	0.0	0
142	Groundwater Remediation Using an Enricher Reactorâ€"Permeable Reactive Biobarrier for Periodically Absent Contaminants. Water Environment Research, 2011, 83, 603-612.	2.7	7
143	Nitrate Removal from Agricultural Infiltrate by Bioaugmented Free and Alginate Entrapped Cells. Water Environment Research, 2010, 82, 617-621.	2.7	9
144	Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzyme and Microbial Technology, 2010, 47, 166-173.	3.2	16

#	Article	IF	CITATIONS
145	Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification. Enzyme and Microbial Technology, 2010, 46, 229-236.	3.2	59
146	Mineralization and biodegradability enhancement of natural organic matter by ozone–VUV in comparison with ozone, VUV, ozone–UV, and UV: Effects of pH and ozone dose. Water Research, 2010, 44, 3531-3543.	11.3	135
147	Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal. , 2010, , $147-169$.		8
148	Effects of cell entrapment on growth rate and metabolic activity of pure cultures commonly found in biological wastewater treatment. Biochemical Engineering Journal, 2009, 46, 286-293.	3.6	13
149	Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. Journal of Hazardous Materials, 2009, 161, 1024-1034.	12.4	52
150	Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 2009, 166, 1339-1343.	12.4	202
151	A feasibility study of immobilized and free mixed culture bioaugmentation for treating atrazine in infiltrate. Journal of Hazardous Materials, 2009, 168, 1373-1379.	12.4	13
152	Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration. Bioresource Technology, 2009, 100, 4454-4461.	9.6	24
153	Atrazine removal in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a: A sand column study. Chemosphere, 2009, 74, 308-313.	8.2	36
154	Method Development for Measuring Biodegradable Dissolved Organic Nitrogen in Treated Wastewater. Water Environment Research, 2009, 81, 779-787.	2.7	19
155	Rapid Fractionation of Natural Organic Matter in Water Using a Novel Solidâ€Phase Extraction Technique. Water Environment Research, 2009, 81, 2299-2308.	2.7	29
156	Effect of Cell-to-matrix Ratio in Polyvinyl Alcohol Immobilized Pure and Mixed Cultures on Atrazine Degradation. Water, Air and Soil Pollution, 2008, 8, 257-266.	0.8	39
157	A Comparative Study of Immobilized Nitrifying and Co-Immobilized Nitrifying and Denitrifying Bacteria for Ammonia Removal from Sludge Digester Supernatant. Water, Air, and Soil Pollution, 2008, 195, 23-33.	2.4	51
158	Effects of cell entrapment on growth rate and metabolic activity of mixed cultures in biological wastewater treatment. Enzyme and Microbial Technology, 2008, 43, 245-251.	3.2	17
159	Method Development for Measuring Biodegradable Dissolved Organic Nitrogen in Treated Wastewater. Proceedings of the Water Environment Federation, 2008, 2008, 3137-3148.	0.0	1
160	Rapid Fractionation of Natural Organic Matter in Water Using a Novel Solid Phase Extraction Technique. Proceedings of the Water Environment Federation, 2008, 2008, 6653-6668.	0.0	0
161	Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Water Science and Technology, 2008, 58, 2215-2222.	2.5	18
162	Hazardous Waste Treatment Technologies. Water Environment Research, 2008, 80, 1654-1708.	2.7	14

#	Article	IF	Citations
163	Atrazine remediation in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a. Water Science and Technology, 2008, 58, 2155-2163.	2.5	1
164	Hazardous Waste Treatment Technologies. Water Environment Research, 2007, 79, 1858-1902.	2.7	7
165	Polycyclic Aromatic Hydrocarbon Removal from Water by Natural Fiber Sorption. Water Environment Research, 2007, 79, 901-911.	2.7	17
166	Immobilized Cell Augmented Activated Sludge Process for Enhanced Nitrogen Removal from Wastewater. Water Environment Research, 2007, 79, 2325-2335.	2.7	10
167	LONG-TERM BIODEGRADABILITY OF DISSOLVED ORGANIC NITROGEN. Proceedings of the Water Environment Federation, 2007, 2007, 5340-5341.	0.0	0
168	Interferences contributed by leaching from filters on measurements of collective organic constituents. Water Research, 2007, 41, 1841-1850.	11.3	16
169	Immobilized-Cell-Augmented Activated Sludge Process for Treating Wastewater Containing Hazardous Compounds. Water Environment Research, 2007, 79, 461-471.	2.7	11
170	Removal of 1,4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water Research, 2006, 40, 692-698.	11.3	71
171	Hazardous Waste Treatment Technologies. Water Environment Research, 2006, 78, 1809-1855.	2.7	0
172	Chromium Removal from Soil by Phytoremediation with Weed Plant Species in Thailand. Water, Air and Soil Pollution, 2006, 6, 191-206.	0.8	53
173	Effect of Leaching from Filters on Laboratory Analyses of Collective Organic Constituents. Proceedings of the Water Environment Federation, 2006, 2006, 901-918.	0.0	5
174	Enhanced Nitrogen Removal using Immobilized Cell Augmented Activated Sludge Process. Proceedings of the Water Environment Federation, 2006, 2006, 1607-1626.	0.0	0
175	Use of Low-Frequency Sonication for the Production of Biodegradable Dissolved Organic Carbon in Water. Environmental Engineering Science, 2006, 23, 367-371.	1.6	6
176	REMOVAL OF POLYCYCLIC AROMATIC HYDROCARBONS FROM RUNOFF USING NATURAL SORBENTS. Proceedings of the Water Environment Federation, 2005, 2005, 5029-5043.	0.0	0
177	Hazardous Waste Treatment Technologies. Water Environment Research, 2005, 77, 2144-2243.	2.7	2
178	Mineralization and Biodegradability Enhancement of Low Level p-Nitrophenol in Water Using Fenton's Reagent. Journal of Environmental Engineering, ASCE, 2005, 131, 327-331.	1.4	6
179	Application of commercial biochemical oxygen demand inocula for biodegradable dissolved organic carbon determination. Water Research, 2005, 39, 4824-4834.	11.3	14
180	Use of biomass sorbents for oil removal from gas station runoff. Chemosphere, 2004, 57, 681-689.	8.2	106

#	Article	IF	CITATION
181	Hazardous Waste Treatment Technologies. Water Environment Research, 2004, 76, 1872-1966.	2.7	2
182	BIODEGRADABLE DISSOLVED ORGANIC CARBON DETERMINATION USING COMMERCIAL BIOCHEMICAL OXYGEN DEMAND SEEDS. Proceedings of the Water Environment Federation, 2004, 2004, 685-695.	0.0	0
183	Determination of biodegradable dissolved organic carbon using entrapped mixed microbial cells. Water Research, 2003, 37, 4981-4991.	11.3	14
184	Hazardous Waste Treatment Technologies. Water Environment Research, 2003, 75, 1106-1229.	2.7	0
185	Use of Biodegradable Dissolved Organic Carbon to Assess Treatment Process Performance in Relation to Solids Retention Time. Water Environment Research, 2001, 73, 517-525.	2.7	9
186	Factors Influencing Biodegradable Dissolved Organic Carbon Measurement. Journal of Environmental Engineering, ASCE, 1999, 125, 514-521.	1.4	18
187	Method development for measuring biodegradable organic carbon in reclaimed and treated wastewaters. Water Environment Research, 1998, 70, 1025-1032.	2.7	34
188	Biodegradable dissolved organic carbon for indicating wastewater reclamation plant performance and treated wastewater quality. Water Environment Research, 1998, 70, 1033-1040.	2.7	30