
Gaia Vaglio Laurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrated panâ€tropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	9.5	469
2	Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89, 49-58.	11.1	208
3	Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 2016, 176, 163-176.	11.0	145
4	Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. International Journal of Forestry Research, 2012, 2012, 1-16.	0.8	141
5	The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 2021, 13, 3927-3950.	9.9	123
6	Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 7-16.	2.8	118
7	Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sensing of Environment, 2015, 160, 134-143.	11.0	109
8	Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	101
9	Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sensing of Environment, 2012, 121, 108-117.	11.0	88
10	Spatial Organization, Activity, and Social Interactions of Culpeo Foxes (Pseudalopex culpaeus) in North-Central Chile. Journal of Mammalogy, 1999, 80, 980-985.	1.3	56
11	Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sensing of Environment, 2019, 233, 111368.	11.0	56
12	Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE, 2014, 9, e97910.	2.5	54
13	Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates. Remote Sensing, 2017, 9, 18.	4.0	50
14	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	11.0	48
15	Airborne LiDAR Detects Selectively Logged Tropical Forest Even in an Advanced Stage of Recovery. Remote Sensing, 2015, 7, 8348-8367.	4.0	41
16	Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 371-379.	2.8	36
17	Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101899.	2.8	30
18	Small Footprint Full-Waveform Metrics Contribution to the Prediction of Biomass in Tropical Forests. Remote Sensing, 2014, 6, 9576-9599.	4.0	26

GAIA VAGLIO LAURIN

#	Article	IF	CITATIONS
19	Satellite open data to monitor forest damage caused by extreme climate-induced events: a case study of the Vaia storm in Northern Italy. Forestry, 2021, 94, 407-416.	2.3	23
20	Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana. IForest, 2016, 9, 354-362.	1.4	21
21	Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 151-161.	2.8	20
22	Discrimination of vegetation types in alpine sites with ALOS PALSAR-, RADARSAT-2-, and lidar-derived information. International Journal of Remote Sensing, 2013, 34, 6898-6913.	2.9	16
23	Analysis of Vegetation Optical Depth and Soil Moisture Retrieved by SMOS Over Tropical Forests. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 504-508.	3.1	16
24	Global Airborne Laser Scanning Data Providers Database (GlobALS)—A New Tool for Monitoring Ecosystems and Biodiversity. Remote Sensing, 2020, 12, 1877.	4.0	16
25	Monitoring tropical forests under a functional perspective with satelliteâ€based vegetation optical depth. Clobal Change Biology, 2020, 26, 3402-3416.	9.5	15
26	DRY and BULK atmospheric nitrogen deposition to a West-African humid forest exposed to terrestrial and oceanic sources. Agricultural and Forest Meteorology, 2016, 218-219, 184-195.	4.8	9
27	Estimated Biomass Loss Caused by the Vaia Windthrow in Northern Italy: Evaluation of Active and Passive Remote Sensing Options. Remote Sensing, 2021, 13, 4924.	4.0	9
28	Early mapping of industrial tomato in Central and Southern Italy with Sentinel 2, aerial and RapidEye additional data. Journal of Agricultural Science, 2018, 156, 396-407.	1.3	8
29	Species dominance and above ground biomass in the BiaÅ,owieża Forest, Poland, described by airborne hyperspectral and lidar data. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102178.	2.8	6
30	Spatial and temporal mapping of soil moisture content with polarimetric RADARSAT 2 SAR imagery in the Alpine area. , 2011, , .		1
31	Forest/vegetation types discrimination in an alpine area using RADARSAT2 and ALOS PALSAR polarimetric data and Neural Networks. , 2012, , .		0