Shuang-Quan Zang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615521/publications.pdf

Version: 2024-02-01

9264 13379 20,447 278 74 130 citations h-index g-index papers 281 281 281 14243 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	13.6	790
2	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	38.1	784
3	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	14.9	760
4	Indirect Z-Scheme BiOI/g-C ₃ N ₄ Photocatalysts with Enhanced Photoreduction CO ₂ Activity under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 3765-3775.	8.0	546
5	MOFâ€Derived Bifunctional Cu ₃ P Nanoparticles Coated by a N,Pâ€Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. Advanced Materials, 2018, 30, 1703711.	21.0	477
6	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	13.8	457
7	Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality: Photochromism, Photomodulated Fluorescence, and Luminescent pH Sensing. Chemistry of Materials, 2015, 27, 1327-1331.	6.7	404
8	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 2020, 412, 213262.	18.8	401
9	Highly selective Fe ³⁺ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. Journal of Materials Chemistry A, 2015, 3, 641-647.	10.3	340
10	Selective Sensing of Fe ³⁺ and Al ³⁺ lons and Detection of 2,4,6â€Trinitrophenol by a Waterâ€Stable Terbiumâ€Based Metalâ€"Organic Framework. Chemistry - A European Journal, 2015, 21, 15705-15712.	3.3	305
11	Supporting Ultrathin ZnIn ₂ S ₄ Nanosheets on Co/Nâ€Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H ₂ Generation. Advanced Materials, 2019, 31, e1903404.	21.0	300
12	Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Journal of the American Chemical Society, 2017, 139, 3505-3512.	13.7	283
13	Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters. Journal of the American Chemical Society, 2018, 140, 1069-1076.	13.7	266
14	Cr(VI) removal via anion exchange on a silver-triazolate MOF. Journal of Hazardous Materials, 2017, 321, 622-628.	12.4	249
15	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	8.2	248
16	Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. Journal of Hazardous Materials, 2016, 311, 11-19.	12.4	234
17	Halogen bonding: A powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coordination Chemistry Reviews, 2016, 308, 1-21.	18.8	220
18	Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. Journal of the American Chemical Society, 2018, 140, 594-597.	13.7	207

#	Article	IF	Citations
19	Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie - International Edition, 2020, 59, 9934-9939.	13.8	196
20	A super water-stable europium–organic framework: guests inducing low-humidity proton conduction and sensing of metal ions. Chemical Communications, 2014, 50, 9153.	4.1	185
21	Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Science Advances, 2020, 6, eaay0107.	10.3	175
22	Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020, 417, 213366.	18.8	174
23	Encapsulating [Mo ₃ S ₁₃] ^{2â^'} clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chemical Communications, 2018, 54, 13563-13566.	4.1	172
24	Dual-emission MOFâŠ f dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. Journal of Materials Chemistry A, 2018, 6, 9183-9191.	10.3	170
25	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 14091-14099.	13.8	168
26	AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie - International Edition, 2020, 59, 10052-10058.	13.8	165
27	Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chemical Society Reviews, 2021, 50, 2297-2319.	38.1	164
28	Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Clusterâ€Assembled Materials. Angewandte Chemie - International Edition, 2018, 57, 8560-8566.	13.8	161
29	Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard-Gas Simulant. Journal of the American Chemical Society, 2019, 141, 14505-14509.	13.7	161
30	A viologen-functionalized chiral Eu-MOF as a platform for multifunctional switchable material. Chemical Communications, 2016, 52, 525-528.	4.1	160
31	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	8.6	157
32	Aqueous- and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid. Journal of Materials Chemistry A, 2015, 3, 12690-12697.	10.3	156
33	MOF-Derived Flower-like MoS ₂ @TiO ₂ Nanohybrids with Enhanced Activity for Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26794-26800.	8.0	154
34	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2021, 33, e2103004.	21.0	142
35	A Crystalline Copper(II) Coordination Polymer for the Efficient Visible‣ightâ€Ðriven Generation of Hydrogen. Angewandte Chemie - International Edition, 2016, 55, 2073-2077.	13.8	140
36	Tuning the functional substituent group and guest of metal–organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. Journal of Materials Chemistry A, 2017, 5, 3464-3474.	10.3	140

#	Article	IF	Citations
37	Facile synthesis of a micro-scale MOF host–guest with long-lasting phosphorescence and enhanced optoelectronic performance. Chemical Communications, 2019, 55, 11099-11102.	4.1	140
38	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	6.7	138
39	Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chemical Society Reviews, 2020, 49, 2481-2503.	38.1	138
40	Thermochromic Luminescent Nestâ€Like Silver Thiolate Cluster. Chemistry - A European Journal, 2014, 20, 12416-12420.	3.3	137
41	Photoresponsive Propellerâ€ike Chiral AIE Copper(I) Clusters. Angewandte Chemie - International Edition, 2020, 59, 5336-5340.	13.8	137
42	Rational Design of Three Two-Fold Interpenetrated Metal–Organic Frameworks: Luminescent Zn/Cd-Metal–Organic Frameworks for Detection of 2,4,6-Trinitrophenol and Nitrofurazone in the Aqueous Phase. Crystal Growth and Design, 2018, 18, 7173-7182.	3.0	135
43	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 4736-4742.	13.8	134
44	A tetranuclear Cu4(μ3-OH)2-based metal–organic framework (MOF) with sulfonate–carboxylate ligands for proton conduction. Chemical Communications, 2013, 49, 10590.	4.1	127
45	Stable dye-encapsulated indium–organic framework as dual-emitting sensor for the detection of Hg ²⁺ /Cr ₂ O ₇ ^{2â^³} and a wide range of nitro-compounds. Journal of Materials Chemistry C, 2018, 6, 6440-6448.	5.5	126
46	Atomically Precise Gold–Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. ACS Nano, 2019, 13, 8320-8328.	14.6	126
47	Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. Advanced Materials, 2020, 32, e2002914.	21.0	125
48	Ferroelectric Switchable Behavior through Fast Reversible De/adsorption of Water Spirals in a Chiral 3D Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10214-10217.	13.7	124
49	Directed Self-Assembly of Ultrasmall Metal Nanoclusters. , 2019, 1, 237-248.		124
50	Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. Journal of the American Chemical Society, 2019, 141, 15755-15760.	13.7	124
51	Electronically and Geometrically Modified Singleâ€Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction. Advanced Materials, 2022, 34, e2107291.	21.0	123
52	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	12.8	122
53	Guestâ€Triggered Aggregationâ€Induced Emission in Silver Chalcogenolate Cluster Metal–Organic Frameworks. Advanced Science, 2019, 6, 1801304.	11,2	120
54	Anionic porous metal–organic framework with novel 5-connected vbk topology for rapid adsorption of dyes and tunable white light emission. Journal of Materials Chemistry C, 2014, 2, 1085-1093.	5 . 5	119

#	Article	IF	Citations
55	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	2.0	114
56	Progress in Atomically Precise Coinage Metal Clusters with Aggregationâ€Induced Emission and Circularly Polarized Luminescence. Advanced Optical Materials, 2020, 8, 1902152.	7.3	114
57	Metal-containing crystalline luminescent thermochromic materials. Coordination Chemistry Reviews, 2018, 377, 307-329.	18.8	108
58	High loading of Mn(<scp>ii</scp>)-metalated porphyrin in a MOF for photocatalytic CO ₂ reduction in gas–solid conditions. Chemical Communications, 2021, 57, 8468-8471.	4.1	107
59	Acid–Baseâ€Triggered Structural Transformation of a Polyoxometalate Core Inside a Dodecahedraneâ€like Silver Thiolate Shell. Angewandte Chemie - International Edition, 2016, 55, 3699-3703.	13.8	106
60	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 26397-26402.	13.8	105
61	Synergy between Isomorphous Acid and Basic Metal–Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. ACS Applied Materials & Interfaces, 2018, 10, 38209-38216.	8.0	103
62	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	10.3	101
63	Metal–organic framework-derived Co ₉ S ₈ embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 7389-7395.	10.3	100
64	Ultrafast Size Expansion and Turnâ€On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angewandte Chemie - International Edition, 2021, 60, 8505-8509.	13.8	96
65	Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2101568.	21.0	96
66	Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. Journal of the American Chemical Society, 2021, 143, 6048-6053.	13.7	95
67	Alkaline Earth Metal (Mg, Sr, Ba)–Organic Frameworks Based on 2,2′,6,6′-Tetracarboxybiphenyl for Proton Conduction. Inorganic Chemistry, 2014, 53, 12050-12057.	4.0	93
68	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie - International Edition, 2019, 58, 12143-12148.	13.8	93
69	Thermoinduced structural-transformation and thermochromic luminescence in organic manganese chloride crystals. Chemical Science, 2019, 10, 3836-3839.	7.4	92
70	Dual-Functional Proton-Conducting and pH-Sensing Polymer Membrane Benefiting from a Eu-MOF. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28720-28726.	8.0	92
71	Metal–Organic Frameworkâ€Based Electrocatalysts for CO ₂ Reduction. Small Structures, 2022, 3, 2100090.	12.0	90
72	Four Cobaltic Coordination Polymers Based on 5-lodo-Isophthalic Acid: Halogen-Related Interaction and Solvent Effect. Crystal Growth and Design, 2012, 12, 1239-1246.	3.0	89

#	Article	IF	CITATIONS
73	Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e48.	9.9	81
74	Halogen Bonding in the Assembly of Coordination Polymers Based on 5-lodo-Isophthalic Acid. Crystal Growth and Design, $2011,11,3395-3405.$	3.0	79
75	Dynamic Core–Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Accounts of Chemical Research, 2020, 53, 2913-2924.	15.6	79
76	Construction of Core–Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. Advanced Science, 2021, 8, e2101884.	11.2	79
77	Sulfonic Groups Lined along Channels of Metal–Organic Frameworks (MOFs) for Super-Proton Conductor. Inorganic Chemistry, 2020, 59, 396-402.	4.0	77
78	One-step MOF-derived Co/Co ₉ S ₈ nanoparticles embedded in nitrogen, sulfur and oxygen ternary-doped porous carbon: an efficient electrocatalyst for overall water splitting. Chemical Communications, 2019, 55, 3203-3206.	4.1	75
79	Fluorescent TPE Macrocycle Relayed Light-Harvesting System for Bright Customized-Color Circularly Polarized Luminescence. Journal of the American Chemical Society, 2022, 144, 5389-5399.	13.7	75
80	A Highly SensitiveC3-Symmetric Schiff-Base Fluorescent Probe for Cd2+. Inorganic Chemistry, 2014, 53, 12665-12667.	4.0	74
81	Aggregation-induced emission in luminescent metal nanoclusters. National Science Review, 2021, 8, nwaa208.	9.5	74
82	Chargeâ€Carrier Transport in Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106822.	21.0	74
83	Self-assembly of an unprecedented polyoxomolybdate anion [Mo ₂₀ O ₆₆] ^{12â^'} in a giant peanut-like 62-core silver-thiolate nanocluster. Nanoscale, 2015, 7, 7151-7154.	5.6	73
84	Apically Co-nanoparticles-wrapped nitrogen-doped carbon nanotubes from a single-source MOF for efficient oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 24071-24077.	10.3	73
85	Coupling of Ru and Oâ€Vacancy on 2D Moâ€Based Electrocatalyst Via a Solidâ€Phase Interface Reaction Strategy for Hydrogen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100141.	19.5	71
86	Photocatalysis: Supporting Ultrathin ZnIn ₂ S ₄ Nanosheets on Co/Nâ€Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H ₂ Generation (Adv. Mater.) Tj ETQq0 0 0	rg Bīī↓© ve	rlo alo 10 Tf 50
87	Spontaneous Resolution of Chiral Multi-Thiolate-Protected Ag ₃₀ Nanoclusters. ACS Central Science, 2020, 6, 1971-1976.	11.3	70
88	Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS2 receptor. Sensors and Actuators B: Chemical, 2016, 226, 332-341.	7.8	69
89	A thermochromic silver nanocluster exhibiting dual emission character. Nanoscale, 2015, 7, 1650-1654.	5 . 6	68
90	<i>o</i> -Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. Journal of the American Chemical Society, 2020, 142, 12010-12014.	13.7	68

#	Article	IF	Citations
91	2-Phenyl-4,5-imidazole dicarboxylate-based metal–organic frameworks assembled under hydro(solvo)thermal conditions. CrystEngComm, 2011, 13, 4895.	2.6	67
92	Crystal Structures and Properties of Cd(II) Coordination Polymers Supported by a New Chiral Aromatic Polycarboxylate Ligand. Crystal Growth and Design, 2014, 14, 1827-1838.	3.0	67
93	Multiple Responsive CPL Switches in an Enantiomeric Pair of Perovskite Confined in Lanthanide MOFs. Advanced Materials, 2022, 34, e2109496.	21.0	67
94	Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 2838-2844.	10.3	64
95	Cationic Covalentâ€Organic Framework as Efficient Redox Motor for Highâ€Performance Lithium–Sulfur Batteries. Small, 2020, 16, e2002932.	10.0	64
96	Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nature Communications, 2020, 11, 5498.	12.8	63
97	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	18.8	63
98	Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coordination Chemistry Reviews, 2022, 453, 214315.	18.8	62
99	Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Science China Chemistry, 2019, 62, 1365-1370.	8.2	61
100	Seven Copper Coordination Polymers Based on 5-lodo-Isophthalic Acid: Halogen-Related Bonding and N-Donor Auxiliary Ligands Modulating Effect. Crystal Growth and Design, 2013, 13, 3353-3364.	3.0	60
101	Smart Transformation of a Polyhedral Oligomeric Silsesquioxane Shell Controlled by Thiolate Silver(I) Nanocluster Core in Cluster@Clusters Dendrimers. Angewandte Chemie - International Edition, 2018, 57, 12775-12779.	13.8	59
102	A viologen-based multifunctional Eu-MOF: photo/electro-modulated chromism and luminescence. Chemical Communications, 2020, 56, 13093-13096.	4.1	59
103	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie - International Edition, 2021, 60, 25514-25521.	13.8	59
104	Restriction of Intramolecular Vibration in Aggregationâ€Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 22417-22423.	13.8	59
105	Syntheses, Structures, and Properties of Silver–Organic Frameworks Constructed with 1,1′-Biphenyl-2,2′,6,6′-tetracarboxylic Acid. Crystal Growth and Design, 2012, 12, 1443-1451.	3.0	57
106	Assembly of Silver(I)â^'Organic Networks from Flexible Supramolecular Synthons with Pendant Ethynide Arms Attached to a Naphthyl Skeleton. Inorganic Chemistry, 2008, 47, 7094-7105.	4.0	56
107	Singleâ€Atom Ru Implanted on Co ₃ O ₄ Nanosheets as Efficient Dualâ€Catalyst for Liâ€CO ₂ Batteries. Advanced Science, 2021, 8, e2102550.	11.2	56
108	Diverse dissolution–recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF. Dalton Transactions, 2017, 46, 11656-11663.	3.3	55

#	Article	IF	Citations
109	A Series of Cd(II) and Zn(II) Coordination Polymers with Helical Subunits Assembled from a Versatile 3-(4-hydroxypyridinium-1-yl) Phthalic Acid and N-Donor Ancillary Coligands. Crystal Growth and Design, 2012, 12, 4431-4440.	3.0	54
110	Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand. Crystal Growth and Design, 2015, 15, 4331-4340.	3.0	54
111	Conversion from a Heterochiral [2 + 2] Coaxially Nested Double-Helical Column to a Cationic Spiral Staircase Stimulated by an Ionic Liquid Anion. Inorganic Chemistry, 2014, 53, 685-687.	4.0	53
112	Fabrication of Copper Azide Film through Metal–Organic Framework for Micro-Initiator Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8081-8088.	8.0	53
113	Ozone Decomposition by a Manganese-Organic Framework over the Entire Humidity Range. Journal of the American Chemical Society, 2021, 143, 5150-5157.	13.7	53
114	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174.	4.1	52
115	Extra Silver Atom Triggers Room‶emperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie - International Edition, 2020, 59, 11898-11902.	13.8	52
116	Carboranealkynylâ€Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angewandte Chemie - International Edition, 2021, 60, 5959-5964.	13.8	52
117	Robust lanthanide metal–organic frameworks with "all-in-one―multifunction: efficient gas adsorption and separation, tunable light emission and luminescence sensing. Journal of Materials Chemistry C, 2021, 9, 3429-3439.	5.5	52
118	Prefabricated covalent organic framework nanosheets with double vacancies: anchoring Cu for highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 25094-25100.	10.3	50
119	Layer-sliding-driven crystal size and photoluminescence change in a novel SCC-MOF. Chemical Communications, 2018, 54, 5361-5364.	4.1	49
120	Cu ₁₄ Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog. Advanced Science, 2019, 6, 1900833.	11.2	49
121	Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. Journal of the American Chemical Society, 2021, 143, 12439-12444.	13.7	49
122	Amino functionalized Zn/Cd-metal–organic frameworks for selective CO ₂ adsorption and Knoevenagel condensation reactions. Dalton Transactions, 2019, 48, 4007-4014.	3.3	47
123	Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Research, 2020, 13, 3248-3252.	10.4	47
124	Photochromic Properties of a Series of Zinc(II)–Viologen Complexes with Structural Regulation by Anions. Crystal Growth and Design, 2017, 17, 6311-6319.	3.0	44
125	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
126	Bimetal–Organic-Framework-Derived Nanohybrids Cu _{0.9} Co _{2.1} S ₄ @MoS ₂ for High-Performance Visible-Light-Catalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1134-1148.	5.1	42

#	Article	IF	CITATIONS
127	Argentophilic Infinite Chain, Column, and Layer Structures Assembled with the Multinuclear Silver(I)–Phenylethynide Supramolecular Synthon. Crystal Growth and Design, 2012, 12, 4519-4529.	3.0	41
128	Unveiling the Mechanism of Waterâ€Triggered Diplex Transformation and Correlating the Changes in Structures and Separation Properties. Advanced Functional Materials, 2015, 25, 6448-6457.	14.9	41
129	Hybrid Nafion Membranes of Ionic Hydrogen-Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56566-56574.	8.0	40
130	Ligandâ€Shell Engineering of a Au ₂₈ Nanocluster Boosts Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	40
131	Mesoporous Crystalline Silver-Chalcogenolate Cluster-Assembled Material with Tailored Photoluminescence Properties. CCS Chemistry, 2019, 1, 553-560.	7.8	39
132	Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society, 2021, 143, 20574-20578.	13.7	39
133	Matrix Coordination Induced Emission in a Threeâ€Dimensional Silver Clusterâ€Assembled Material. Chemistry - A European Journal, 2019, 25, 2750-2756.	3.3	38
134	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
135	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	10.7	38
136	Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 13890-13897.	10.3	38
137	Halogen···Halogen Interactions in the Assembly of High-Dimensional Supramolecular Coordination Polymers Based on 3,5-Diiodobenzoic Acid. Crystal Growth and Design, 2014, 14, 6325-6336.	3.0	37
138	A new quinoline-based fluorescent probe for Cd ²⁺ and Hg ²⁺ with an opposite response in a 100% aqueous environment and live cell imaging. Dalton Transactions, 2016, 45, 8174-8181.	3.3	37
139	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 4766-4772.	2.0	37
140	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 14210-14218.	2.0	37
141	Opening catalytic sites in the copper-triazoles framework via defect chemistry for switching on the proton reduction. Applied Catalysis B: Environmental, 2021, 288, 119941.	20.2	37
142	Divalent zinc and cadmium coordination polymers of a new flexible tetracarboxylate ligand: syntheses, crystal structures and properties. Dalton Transactions, 2010, 39, 8022.	3.3	36
143	Linker Flexibilityâ€Dependent Cluster Transformations and Clusterâ€Controlled Luminescence in Isostructural Silver Clusterâ€Assembled Materials (SCAMs). Chemistry - A European Journal, 2019, 25, 3376-3381.	3.3	36
144	Stepwise Achievement of Circularly Polarized Luminescence on Atomically Precise Silver Clusters. Advanced Science, 2020, 7, 2000738.	11.2	36

#	Article	IF	Citations
145	Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie, 2020, 132, 10020-10025.	2.0	36
146	Acid–Baseâ€Triggered Structural Transformation of a Polyoxometalate Core Inside a Dodecahedraneâ€like Silver Thiolate Shell. Angewandte Chemie, 2016, 128, 3763-3767.	2.0	35
147	New stable isomorphous Ag ₃₄ and Ag ₃₃ Au nanoclusters with an open shell electronic structure. Nanoscale, 2018, 10, 21013-21018.	5.6	35
148	AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie, 2020, 132, 10138-10144.	2.0	34
149	Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery. Chemical Communications, 2020, 56, 8766-8769.	4.1	34
150	A multi-responsive indium-viologen hybrid with ultrafast-response photochromism and electrochromism. Chemical Communications, 2021, 57, 11394-11397.	4.1	34
151	Divalent Zinc, Cobalt, and Cadmium Coordination Polymers of a New Flexible Trifunctional Ligand: Syntheses, Crystal Structures, and Properties. Crystal Growth and Design, 2012, 12, 1830-1837.	3.0	33
152	Enzyme immobilization in highly ordered macro–microporous metal–organic frameworks for rapid biodegradation of hazardous dyes. Inorganic Chemistry Frontiers, 2020, 7, 3146-3153.	6.0	33
153	Pyrolysisâ€Free Synthesized Catalyst towards Acidic Oxygen Reduction by Deprotonation. Angewandte Chemie - International Edition, 2021, 60, 20865-20871.	13.8	33
154	Aminalâ€Linked Porphyrinic Covalent Organic Framework for Rapid Photocatalytic Decontamination of Mustardâ€Gas Simulant. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
155	(4,4)-Connected Self-penetrating Pillared-Layered Metal–Organic Framework Based on a Nanosized Flexible Aromatic Carboxylic Acid Ligand. Crystal Growth and Design, 2012, 12, 4299-4301.	3.0	32
156	Photochromic and photomodulated luminescence properties of two metal–viologen complexes constructed by a tetracarboxylate-anchored bipyridinium-based ligand. CrystEngComm, 2018, 20, 6412-6419.	2.6	32
157	MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. Journal of Energy Chemistry, 2020, 44, 90-96.	12.9	32
158	Edge confined covalent organic framework with efficient biocompatibility and photothermic conversion. Nano Today, 2021, 37, 101101.	11.9	32
159	Silver Clusterâ€Porphyrinâ€Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria. Advanced Science, 2022, 9, e2103721.	11.2	32
160	Compositionâ€Dependent Enzyme Mimicking Activity and Radiosensitizing Effect of Bimetallic Clusters to Modulate Tumor Hypoxia for Enhanced Cancer Therapy. Advanced Materials, 2022, 34, .	21.0	32
161	Silver(I)â^'Organic Networks Assembled with Propargyl-Functionalized Di- and Trihydroxybenzenes. Organometallics, 2011, 30, 1710-1718.	2.3	31
162	Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nature Communications, 2022, $13,1177.$	12.8	31

#	Article	IF	Citations
163	Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Clusterâ€Assembled Materials. Angewandte Chemie, 2018, 130, 8696-8702.	2.0	30
164	Reversible Wideâ€Range Tuneable Luminescence of a Dualâ€Stimuli―Responsive Silver Clusterâ€Assembled Material. Chinese Journal of Chemistry, 2019, 37, 1120-1124.	4.9	30
165	Distinct photophysical properties in atom-precise silver and copper nanocluster analogues. Nanoscale, 2019, 11, 5151-5157.	5.6	30
166	High-performance primary explosives derived from copper thiolate cluster-assembled materials for micro-initiating device. Chemical Engineering Journal, 2020, 389, 124455.	12.7	30
167	Crystalline Metalâ€Organic Materials with Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2021, 9, 2100081.	7.3	30
168	First Three-Dimensional Self-Penetrating Coordination Polymer Containing Rare (10,3)-d Subnets: Synthesis, Structure, and Properties. Crystal Growth and Design, 2013, 13, 1812-1814.	3.0	29
169	Self-Assembly of a Stable Silver Thiolate Nanocluster Encapsulating a Lacunary Keggin Phosphotungstate Anion. Inorganic Chemistry, 2018, 57, 4828-4832.	4.0	29
170	Organicâ°'Inorganic Manganese Bromide Hybrids with Waterâ€Triggered Luminescence for Rewritable Paper. Advanced Optical Materials, 2022, 10, .	7.3	28
171	Tuning the Magic Sizes and Optical Properties of Atomically Precise Bidentate Nâ€Heterocyclic Carbeneâ€Protected Gold Nanoclusters via Subtle Change of Nâ€Substituents. Advanced Optical Materials, 2021, 9, 2001936.	7.3	27
172	Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today, 2021, 39, 101222.	11.9	27
173	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie - International Edition, 2022, 61, e202114538.	13.8	27
174	A Crystalline Copper(II) Coordination Polymer for the Efficient Visibleâ€Lightâ€Driven Generation of Hydrogen. Angewandte Chemie, 2016, 128, 2113-2117.	2.0	26
175	Photoresponsive Propellerâ€like Chiral AIE Copper(I) Clusters. Angewandte Chemie, 2020, 132, 5374-5378.	2.0	26
176	N-donor ligand mediated assembly of divalent zinc and cadmium coordination polymers based on 2,3,2′,3′-thiaphthalic acid: structures and properties. CrystEngComm, 2012, 14, 4444.	2.6	25
177	A series of Ag(i)–Cd(ii) hetero- and Ag(i) homo-nuclear coordination polymers based on 5-iodo-isophthalic acid and N-donor ancillary ligands. CrystEngComm, 2014, 16, 223-230.	2.6	25
178	Effect of lanthanide contraction on crystal structures of Ln(iii) coordination polymers with dinuclear SBUs based on 3-(4-hydroxypyridinium-1-yl) phthalic acid and oxalic acid. CrystEngComm, 2013, 15, 5910.	2.6	24
179	A new silver cluster that emits bright-blue phosphorescence. Chemical Communications, 2020, 56, 2451-2454.	4.1	24
180	Pressureâ€Triggered Blue Emission of Zeroâ€Dimensional Organic Bismuth Bromide Perovskite. Advanced Science, 2021, 8, 2004853.	11.2	24

#	Article	IF	CITATIONS
181	Recent development on the alkaline earth MOFs (AEMOFs). Coordination Chemistry Reviews, 2021, 440, 213955.	18.8	24
182	Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal–Organic Polyhedron (MOP). Inorganic Chemistry, 2022, 61, 2813-2823.	4.0	24
183	Directional Doping and Cocrystallizing an Open-Shell Ag ₃₉ Superatom <i>via</i> Precursor Engineering. ACS Nano, 2022, 16, 5507-5514.	14.6	24
184	Remoulding a MOF's pores by auxiliary ligand introduction for stability improvement and highly selective CO ₂ -capture. Chemical Communications, 2018, 54, 12029-12032.	4.1	23
185	3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction. Chinese Journal of Catalysis, 2021, 42, 490-500.	14.0	23
186	Uniformly Dispersed Ru Nanoparticles Constructed by In Situ Confined Polymerization of Ionic Liquids for the Electrocatalytic Hydrogen Evolution Reaction. Small Methods, 2021, 5, e2100505.	8.6	23
187	Photoluminescence modulation of an atomically precise silver(<scp>i</scp>)–thiolate cluster <i>via</i> site-specific surface engineering. Dalton Transactions, 2018, 47, 14884-14888.	3.3	22
188	A fivefold linker length reduction in an interpenetrated metal–organic framework ⟨i⟩via⟨ i⟩ sequential solvent-assisted linker exchange. Chemical Communications, 2019, 55, 12671-12674.	4.1	22
189	A hydrophobic semiconducting metal–organic framework assembled from silver chalcogenide wires. Chemical Communications, 2020, 56, 2091-2094.	4.1	22
190	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
191	Construction of a series of metal–organic frameworks based on novel flexible ligand 4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride and selective d-block metal ions: crystal structures and photoluminescence. CrystEngComm, 2015, 17, 6297-6307.	2.6	21
192	Self-assembly of thiolate-protected silver coordination polymers regulated by POMs. Nanoscale, 2020, 12, 10944-10948.	5.6	20
193	Silverâ√X–aryl (X = I and Br) interaction in a network assembly with a flexible polynuclear silver–ethynide supramolecular synthon. CrystEngComm, 2009, 11, 1061.	2.6	19
194	Crafting CdTe/CdS QDs surface for the selective recognition of formaldehyde gas via ratiometric contrivance. Sensors and Actuators B: Chemical, 2020, 304, 127379.	7.8	19
195	Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. Journal of Energy Chemistry, 2022, 69, 76-83.	12.9	19
196	Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Inorganic Chemistry, 2022, 61, 3406-3411.	4.0	19
197	Silver(i)–organic frameworks assembled with flexible supramolecular synthons with a pendant ethynide arm attached to the heteroaryl skeleton. CrystEngComm, 2014, 16, 723-729.	2.6	18
198	Synthesis of Atomâ€Precise Chiral Ag 14 Clusters Protected by Penicillamine Ligands. Particle and Particle Systems Characterization, 2019, 36, 1900069.	2.3	18

#	Article	IF	Citations
199	Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Science China Chemistry, 2022, 65, 1122-1128.	8.2	18
200	Photochromic and electrochromic properties of a viologen-based multifunctional Cd-MOF. Chemical Communications, 2022, 58, 7753-7756.	4.1	18
201	Luminescent cyclic trinuclear coinage metal complexes with aggregation-induced emission (AIE) performance. Dalton Transactions, 2019, 48, 2275-2279.	3.3	17
202	Creating a Polar Surface in Carbon Frameworks from Single-Source Metal–Organic Frameworks for Advanced CO2 Uptake and Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 4258-4266.	6.7	17
203	Dicarboxylate-Induced Structural Diversity of Luminescent Zn(II)/Cd(II) Metal-Organic Frameworks Based on the 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 2725-2734.	2.0	17
204	1D silver cluster-assembled materials act as a platform for selectively erasable photoluminescent switch of acetonitrile. Science China Chemistry, 2019, 62, 331-335.	8.2	17
205	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	4.1	16
206	Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Research, 2021, 14, 2309.	10.4	16
207	Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. Chemical Communications, 2021, 57, 2372-2375.	4.1	16
208	An enantiomeric pair of 2D organic–inorganic hybrid perovskites with circularly polarized luminescence and photoelectric effects. Journal of Materials Chemistry C, 2022, 10, 3440-3446.	5.5	16
209	Multidimensional Ni-Co-sulfide heterojunction electrocatalyst for highly efficient overall water splitting. Science China Materials, 2022, 65, 2421-2432.	6.3	16
210	A series of five divalent zinc and cadmium coordination polymers based on a new bifunctional ligand: syntheses, crystal structures, and properties. CrystEngComm, 2012, 14, 3951.	2.6	15
211	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie, 2019, 131, 12271-12276.	2.0	15
212	A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. Journal of Nanobiotechnology, 2021, 19, 438.	9.1	15
213	Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster. Nano Research, 2022, 15, 5569-5574.	10.4	15
214	Sulfonic Acids Supported on UiO-66 as Heterogeneous Catalysts for the Esterification of Fatty Acids for Biodiesel Production. Catalysts, 2020, 10, 1271.	3.5	14
215	A high-nuclearity Cu ^I /Cu ^{II} nanocluster catalyst for phenol degradation. Chemical Communications, 2021, 57, 5586-5589.	4.1	14
216	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie, 2021, 133, 26601-26606.	2.0	14

#	Article	IF	Citations
217	Zero-Dimensional Zinc Halide Organic Hybrids with Excellent Optical Waveguide Properties. Crystal Growth and Design, 2022, 22, 3295-3302.	3.0	14
218	Smart Transformation of a Polyhedral Oligomeric Silsesquioxane Shell Controlled by Thiolate Silver(I) Nanocluster Core in Cluster@Clusters Dendrimers. Angewandte Chemie, 2018, 130, 12957-12961.	2.0	13
219	Ultrafast Size Expansion and Turnâ€On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angewandte Chemie, 2021, 133, 8586-8590.	2.0	13
220	Assembly of silver(i)–organic frameworks from flexible supramolecular synthons with pendant ethynide arm attached to biphenyl and phenoxybenzene skeletons. CrystEngComm, 2013, 15, 4087.	2.6	12
221	Investigating the influence of a CrO42â^'/Cr2O72â^' template in the formation of a series of silver–chalcogenide clusters. New Journal of Chemistry, 2019, 43, 115-120.	2.8	12
222	New rhodamine-based turn-on and colorimetric probe for copper(II) ion with high selectivity and sensitivity. Inorganica Chimica Acta, 2014, 419, 141-146.	2.4	11
223	Inter-chain double-site synergistic photocatalytic hydrogen evolution in robust cuprous coordination polymers. Chemical Communications, 2020, 56, 6261-6264.	4.1	11
224	Controllable Strategy for Metal–Organic Framework Light-Driven [2 + 2] Cycloaddition Reactions via Solvent-Assisted Linker Exchange. Inorganic Chemistry, 2021, 60, 2117-2121.	4.0	11
225	Assembling Silver Cluster-Based Organic Frameworks for Higher-Performance Hypergolic Properties. Jacs Au, 2021, 1, 2202-2207.	7.9	11
226	Rational designed isostructural MOF for the charge—discharge behavior study of super capacitors. Nano Research, 2022, 15, 6208-6212.	10.4	11
227	Ligandâ€Shell Engineering of a Au ₂₈ Nanocluster Boosts Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	11
228	Water sandwiched by a pair of aromatic rings in a proton-conducting metal–organic framework. Dalton Transactions, 2016, 45, 18142-18146.	3.3	10
229	Aqueous media ultra-sensitive detection of antibiotics via highly stable luminescent 3D Cadmium-based MOF. New Journal of Chemistry, 2021, 45, 20887-20894.	2.8	10
230	A cyclic dodecanuclear cobalt cluster based on a derivative of the rhodamine 6G dye with unusual magnetization. Chemical Communications, 2015, 51, 12716-12719.	4.1	9
231	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie, 2021, 133, 25718-25725.	2.0	9
232	lonic covalent organic nanosheet anchoring discrete copper for efficient quasi-homogeneous photocatalytic proton reduction. Applied Catalysis B: Environmental, 2022, 302, 120817.	20.2	9
233	Hydrazone connected stable luminescent covalent–organic polymer for ultrafast detection of nitro-explosives. RSC Advances, 2021, 11, 39270-39277.	3.6	9
234	Programming a Metal–Organic Framework toward Excellent Hypergolicity. ACS Applied Materials & Interfaces, 2022, 14, 23909-23915.	8.0	9

#	Article	IF	CITATIONS
235	Two Nanometer-Sized High-Nuclearity Homometallic Bromide Clusters (M ₂₆ Br ₃₈) ^{12–} (M = Cu, Ag): Syntheses, Crystal Structures, and Efficient Adsorption Properties. Inorganic Chemistry, 2020, 59, 9579-9586.	4.0	8
236	<scp>Goldâ€Hydrogen</scp> Nanoclusters: <scp>Atomâ€Precise</scp> Model to Unveil Catalytic Mechanism and Growth Process of Gold Nanoparticles. Chinese Journal of Chemistry, 2020, 38, 663-664.	4.9	8
237	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie, 2022, 134, .	2.0	8
238	Recoverable Mechanoresponsive Luminescent Molecular Sponge Material: A Novel Aryl Gold(I) Isocyanide Compound. Crystal Growth and Design, 2019, 19, 538-542.	3.0	7
239	Extra Silver Atom Triggers Roomâ€Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie, 2020, 132, 11996-12000.	2.0	7
240	Room-temperature phosphorescence of manganese-based metal halides. Dalton Transactions, 2021, 50, 17275-17280.	3.3	7
241	Carboranealkynylâ€Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angewandte Chemie, 2021, 133, 6024-6029.	2.0	6
242	Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. Nanoscale, 2022, 14, 1538-1565.	5.6	6
243	Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy. Journal of Nanobiotechnology, 2022, 20, 20.	9.1	6
244	Metal complexes of indole-3-acetic acid: synthesis, crystal structures, and Pb ²⁺ chemosensing by cation-exchange reaction. Journal of Coordination Chemistry, 2014, 67, 3188-3201.	2.2	5
245	Facile Synthesis of a Heteroatoms′ Quaternaryâ€Doped Porous Carbon as an Efficient and Stable Metalâ€Free Catalyst for Oxygen Reduction. ChemistrySelect, 2017, 2, 6129-6134.	1.5	5
246	Matrix Coordination Induced Emission in a Threeâ€Dimensional Silver Clusterâ€Assembled Material. Chemistry - A European Journal, 2019, 25, 2648-2648.	3.3	5
247	Ensembles from silver clusters and cucurbit[6]uril-containing linkers. Dalton Transactions, 2021, 50, 15267-15273.	3.3	5
248	Restriction of Intramolecular Vibration in Aggregationâ€Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 22591-22597.	2.0	5
249	Frontispiece: Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e138.	9.9	5
250	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie, 2022, 134, .	2.0	5
251	An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15, 5081-5088.	10.4	5
252	Electrostatic attraction induces cationic covalent-organic framework to pack inorganic acid ions for promoting proton conduction. Chemical Communications, 2022, 58, 6084-6087.	4.1	5

#	Article	IF	CITATIONS
253	Achiral copper clusters helically confined in self-assembled chiral nanotubes emitting circularly polarized phosphorescence. Inorganic Chemistry Frontiers, 2022, 9, 3330-3334.	6.0	5
254	Site-specific sulfur-for-metal replacement in a silver nanocluster. Chemical Communications, 2022, 58, 7321-7324.	4.1	5
255	Synthesis, crystal structure and magnetic properties of a new 1-D oxamidate-bridged Cu(II)-Mn(II) polymer. Journal of Coordination Chemistry, 2008, 61, 3642-3650.	2.2	4
256	A d ¹⁰ Metal Coordination Polymer Containing a Thiodiphthalic Ligand: Crystal Structure and Luminescent Property. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1427-1431.	1.2	4
257	Pyrolysisâ€Free Synthesized Catalyst towards Acidic Oxygen Reduction by Deprotonation. Angewandte Chemie, 2021, 133, 21033-21039.	2.0	4
258	Co-assembly of Ag ₂₉ Nanoclusters with Ru(bpy) ₃ ²⁺ for Two-Photon Up-Conversion and Singlet Oxygen Generation., 2022, 4, 960-966.		4
259	Syntheses, Structures and Properties of Two Metal–lodide Polymers Based on a Flexile N-Donor Ligand. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 718-722.	3.7	3
260	A robust wave-like silver–thiolate chain based metal–organic network: synthesis, structure and luminescence. CrystEngComm, 2019, 21, 2264-2267.	2.6	3
261	AlE Ligand Constructed Zn(II) Complex with Reversible Photo-induced Color and Emission Changes. Chemical Research in Chinese Universities, 2021, 37, 123-128.	2.6	3
262	AIE ligand-based silver clusters used for ethion detection. Materials Chemistry Frontiers, 2021, 5, 7982-7986.	5.9	3
263	Epitaxial coordination assembly of a semi-conductive silver-chalcogenide layer-based MOF. Chemical Communications, 2022, 58, 1788-1791.	4.1	3
264	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie, 0, , .	2.0	3
265	Chiral gold clusters functionalized two-dimensional nanoparticle films to regulate the adhesion and differentiation of stem cells. Journal of Colloid and Interface Science, 2022, 625, 831-838.	9.4	3
266	A Novel Co(II) Coordination Polymer Assembled from V-shaped 2,3,2',3'-Thiodiphthalic Acid and N-donor Ancillary Ligand: Syntheses, Structure and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 753-758.	3.7	2
267	Copper Nanoclusters: Cu ₁₄ Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog (Adv. Sci. 18/2019). Advanced Science, 2019, 6, 1970108.	11.2	2
268	Photoluminescence and Electrochemical Sensing of Atomically Precise Cu ₁₃ Cluster. Acta Chimica Sinica, 2021, 79, 1037.	1.4	2
269	Aminalâ€Linked Porphyrinic Covalent Organic Framework for Rapid Photocatalytic Decontamination of Mustardâ€Gas Simulant. Angewandte Chemie, 0, , .	2.0	2
270	Two New Copper(II) Complexes Based on Biphenyl-2,2',6,6'-Tetracarboxylic Acid and Terpyridine: Synthesis, Crystal Structures, and Thermal Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1356-1362.	0.6	1

#	Article	IF	CITATIONS
271	Synthesis, Crystal Structure and Properties of a Chiral 2D Zn(II) Coordination Polymer with Helical Chains. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 403-407.	0.7	1
272	Fast and Reversible Detection of Nitrobenzene Vapour by a Fluorescent Metal–Organic Framework Templated by Ionic Liquid. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1320-1326.	3.7	1
273	Hydrogen Evolution Reaction: Coupling of Ru and Oâ€Vacancy on 2D Moâ€Based Electrocatalyst Via a Solidâ€Phase Interface Reaction Strategy for Hydrogen Evolution Reaction (Adv. Energy Mater. 26/2021). Advanced Energy Materials, 2021, 11, 2170102.	19.5	1
274	Assembly of 1,2,3,4-Benzenetetracarboxylic Acid and Zinc(II) Metal Centers to a Chiral 3D Metal-organic Framework: Syntheses, Structure and Properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2011, 66, 533-537.	0.7	0
275	Hydrothermal Synthesis, Crystal Structure and Properties of a 1D Metal-organic Coordination Polymer [Cd(pztmb)2(H ₂ O) ₂ _n . Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2011, 66, 444-448.	0.7	0
276	A Two-fold Interpenetrated Diamondlike 3D Metal-Organic Cd(II) Complex Based on 5-lodo-isophthalic Acid and 1,3-Bi(4-pyridyl)propane. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 499-503.	0.7	0
277	Porous Coordination Polymers: Unveiling the Mechanism of Waterâ€Triggered Diplex Transformation and Correlating the Changes in Structures and Separation Properties (Adv. Funct. Mater. 41/2015). Advanced Functional Materials, 2015, 25, 6556-6556.	14.9	0
278	Levonorgestrel-protected Au ₈ and Au ₁₀ clusters with different antimicrobial abilities. Journal of Materials Chemistry B, 2022, 10, 5028-5034.	5. 8	0