Jen-Shyang Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoted NIRâ€II Fluorescence by Heteroatomâ€Inserted Rigidâ€Planar Cores for Monitoring Cell Therapy of Acute Lung Injury. Small, 2022, 18, e2105362.	10.0	19
2	Promoted NIRâ€II Fluorescence by Heteroatomâ€Inserted Rigidâ€Planar Cores for Monitoring Cell Therapy of Acute Lung Injury (Small 1/2022). Small, 2022, 18, .	10.0	1
3	Heteroalkylâ€Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials, 2022, 32, .	14.9	22
4	Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11254-11267.	10.3	11
5	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22053-22060.	8.0	8
6	2,3-Diphenylthieno[3,4- <i>b</i>]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2118-2127.	17.4	27
7	Self-assembled AlEgen nanoparticles for multiscale NIR-II vascular imaging. Biomaterials, 2021, 264, 120365.	11.4	54
8	Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angewandte Chemie, 2021, 133, 5446-5453.	2.0	9
9	Facile star-shaped tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1373-1387.	5.9	11
10	Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 5386-5393.	13.8	103
11	Solutionâ€Processable Multifused Thiophene Small Molecules and Conjugated Polymer Semiconducting Blend for Organic Field Effect Transistor Application. Advanced Materials Technologies, 2021, 6, 2001028.	5.8	14
12	Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 3286-3296.	6.7	25
13	Influence of various dithienoheterocycles as conjugated linker in Naphtho[2,3-d] [1,2,3]triazole-based organic dyes for dye-sensitized solar cells. Dyes and Pigments, 2021, 188, 109220.	3.7	11
14	NIRâ€II Absorbing Semiconducting Polymerâ€Triggered Geneâ€Directed Enzyme Prodrug Therapy for Cancer Treatment. Small, 2021, 17, e2100501.	10.0	15
15	Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Low ost Holeâ€Transporting Materials. Small, 2021, 17, e2100783.	10.0	19
16	Photoacoustic Forceâ€Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. Advanced Science, 2021, 8, 2100228.	11.2	6
17	A Multispectral Photoacoustic Tracking Strategy for Wide-Field and Real-Time Monitoring of Macrophages in Inflammation. Analytical Chemistry, 2021, 93, 8467-8475.	6.5	11
18	Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials, 2021, 275, 120907.	11.4	15

JEN-SHYANG NI

#	Article	IF	CITATIONS
19	NIRâ€II Fluorescent Brightness Promoted by "Ring Fusion―for the Detection of Intestinal Inflammation. Chemistry - A European Journal, 2021, 27, 13085-13091.	3.3	18
20	Monitoring tumor growth with a novel NIR-II photoacoustic probe. Methods in Enzymology, 2021, 657, 181-222.	1.0	0
21	Type I macrophage activator photosensitizer against hypoxic tumors. Chemical Science, 2021, 12, 14773-14780.	7.4	18
22	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	6.7	9
23	Acceptor engineering of small-molecule fluorophores for NIR-II fluorescence and photoacoustic imaging. Journal of Materials Chemistry B, 2021, 9, 9951-9960.	5.8	20
24	Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes. Journal of Materials Chemistry C, 2020, 8, 15322-15330.	5.5	20
25	An Esterâ€Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIRâ€I Photoacoustic Performance for Monitoring of Tumor Growth. Angewandte Chemie - International Edition, 2020, 59, 23268-23276.	13.8	76
26	Subâ€10 nm Aggregationâ€Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angewandte Chemie, 2020, 132, 22083-22087.	2.0	8
27	An Esterâ€Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIRâ€II Photoacoustic Performance for Monitoring of Tumor Growth. Angewandte Chemie, 2020, 132, 23468-23476.	2.0	7
28	Subâ€10 nm Aggregationâ€Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angewandte Chemie - International Edition, 2020, 59, 21899-21903.	13.8	45
29	A Photoinduced Nonadiabatic Decayâ€Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. Angewandte Chemie, 2020, 132, 11394-11398.	2.0	15
30	Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15071-15079.	8.0	27
31	Planar AlEgens with Enhanced Solidâ€State Luminescence and ROS Generation for Multidrugâ€Resistant Bacteria Treatment. Angewandte Chemie, 2020, 132, 10265-10271.	2.0	5
32	Planar AlEgens with Enhanced Solid‣tate Luminescence and ROS Generation for Multidrugâ€Resistant Bacteria Treatment. Angewandte Chemie - International Edition, 2020, 59, 10179-10185.	13.8	76
33	A Photoinduced Nonadiabatic Decayâ€Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 11298-11302.	13.8	73
34	Centimeter-Deep NIR-II Fluorescence Imaging with Nontoxic AIE Probes in Nonhuman Primates. Research, 2020, 2020, 4074593.	5.7	33
35	Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics, 2020, 10, 1923-1947.	10.0	61
36	Benzodithiophene Holeâ€Transporting Materials for Efficient Tinâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905393.	14.9	49

JEN-SHYANG NI

#	Article	IF	CITATIONS
37	Pyrene-based aggregation-induced emission luminogens (AIEgen): structure correlated with particle size distribution and mechanochromism. Journal of Materials Chemistry C, 2019, 7, 6932-6940.	5.5	53
38	SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AlEgens. Analytical Chemistry, 2019, 91, 2169-2176.	6.5	40
39	Red/NIRâ€Emissive Benzo[<i>d</i>]imidazoleâ€Cored AlEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. Advanced Materials, 2018, 30, e1805220.	21.0	106
40	The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. Materials Chemistry Frontiers, 2018, 2, 1498-1507.	5.9	61
41	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 12310-12321.	10.3	55
42	High performance solution-processable tetrathienoacene (TTAR) based small molecules for organic field effect transistors (OFETs). Chemical Communications, 2017, 53, 5898-5901.	4.1	28
43	Solutionâ€Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambientâ€Stable nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606761.	14.9	62
44	Benzimidazole/Pyridoimidazoleâ€Based Organic Sensitizers for Highâ€Performance Dyeâ€ S ensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 996-1004.	3.3	14
45	Solution-processable end-functionalized tetrathienoacene semiconductors: Synthesis, characterization and organic field effect transistors applications. Dyes and Pigments, 2017, 145, 584-590.	3.7	14
46	Organic sensitizers with a rigid dithienobenzotriazole-based spacer for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 6553-6560.	10.3	44
47	Synthesis and characterization of two-photon active chromophores based on asymmetrically substituted tetrathienoacene scaffolds. Dyes and Pigments, 2016, 133, 65-72.	3.7	3
48	Organic Photosensitizers Incorporating Rigidified Dithieno[3,2-‹i>f‹/i>:2′,3′-‹i>h‹/i>]quinoxaline Segment Tethered with Thiophene Substitutes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 23066-23073.	8.0	25
49	Nearâ€Infraredâ€Absorbing and Dopantâ€Free Heterocyclic Quinoidâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 3139-3144.	6.8	23
50	Synthesis and characterization of solution-processable diketopyrrolopyrrole (DPP) and tetrathienothiophene (TTA)-based small molecules for organic thin film transistors and organic photovoltaic cells. Dyes and Pigments, 2016, 133, 280-291.	3.7	28
51	Naphtho[2,3- <i>c</i>][1,2,5]thiadiazole and 2 <i>H</i> -Naphtho[2,3- <i>d</i>][1,2,3]triazole-Containing D–Aâ"̀–A Conjugated Organic Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6117-6126.	8.0	38
52	Functionalized soluble triethylsilylethynyl anthradithiophenes (TESADTs) for organic electronic devices. Dyes and Pigments, 2016, 126, 261-269.	3.7	4
53	Bipolar transport materials for electroluminescence applications. Organic Electronics, 2016, 30, 265-274.	2.6	5
54	Imidazoleâ€Based Sensitizers Containing Double Anchors for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 7367-7377.	2.4	30

JEN-SHYANG NI

#	Article	IF	CITATIONS
55	Synthesis and characterization of novel symmetrical two-photon chromophores derived from bis(triphenylaminotetrathienoacenyl) and fused-thiophene units. RSC Advances, 2015, 5, 54003-54010.	3.6	7
56	Organic Dyes Incorporating the Dithieno[3,2â€ <i>f</i> :2′,3′â€ <i>h</i>]quinoxaline Moiety for Dye‧ensit Solar Cells. ChemSusChem, 2015, 8, 2932-2939.	ized 6.8	34
57	Organic dyes with a fused segment comprising benzotriazole and thieno[3,2-b]pyrrole entities as the conjugated spacer for high performance dye-sensitized solar cells. Chemical Communications, 2015, 51, 17080-17083.	4.1	58
58	2H-[1,2,3]Triazolo[4,5-c]pyridine Cored Organic Dyes Achieving a High Efficiency: a Systematic Study of the Effect of Different Donors and π Spacers. ACS Applied Materials & Interfaces, 2015, 7, 22046-22057.	8.0	22
59	Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells. Chemical Communications, 2015, 51, 2152-2155.	4.1	90
60	Anthracene/Phenothiazine ï€â€Conjugated Sensitizers for Dyeâ€Sensitized Solar Cells using Redox Mediator in Organic and Waterâ€based Solvents. ChemSusChem, 2015, 8, 105-113.	6.8	36
61	Organic Dyes Incorporating the Dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-‹i>c]furazan Moiety for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22612-22621.	8.0	30
62	Phenothiazinedioxideâ€Conjugated Sensitizers and a Dualâ€TEMPO/Iodide Redox Mediator for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2221-2229.	6.8	12
63	Tetrasubstituted-pyrene derivatives for electroluminescent application. Organic Electronics, 2014, 15, 2148-2157.	2.6	9
64	Photovoltaic performance of ruthenium complex dye associated with number and position of carboxyl groups on bipyridine ligands. Materials Chemistry and Physics, 2013, 142, 420-427.	4.0	5
65	Ruthenium complex dye with designed ligand capable of chelating triiodide anion for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3463.	10.3	16
66	Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. Journal of Colloid and Interface Science, 2012, 386, 359-365.	9.4	21
67	Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes. Journal of Colloid and Interface Science, 2012, 372, 73-79.	9.4	18