Nathan B Basisty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561485/publications.pdf

Version: 2024-02-01

39 papers 3,030 citations

28 h-index 302126 39 g-index

52 all docs 52 docs citations

times ranked

52

4112 citing authors

#	Article	IF	Citations
1	Short-term senolytic treatment: a paradigm to promote fracture repair during aging. Journal of Clinical Investigation, 2022, 132 , .	8.2	5
2	Connecting aging biology and inflammation in the omics era. Journal of Clinical Investigation, 2022, 132, .	8.2	48
3	Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches. Methods in Molecular Biology, 2021, 2228, 225-235.	0.9	11
4	Quantitative Proteomic Analysis of the Senescenceâ€Associated Secretory Phenotype by Dataâ€Independent Acquisition. Current Protocols, 2021, 1, e32.	2.9	25
5	Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell, 2021, 20, e13325.	6.7	59
6	Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nature Protocols, 2021, 16, 2471-2498.	12.0	92
7	Accumulation of "Old Proteins―and the Critical Need for MSâ€based Protein Turnover Measurements in Aging and Longevity. Proteomics, 2020, 20, e1800403.	2.2	24
8	Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell, 2020, 19, e13086.	6.7	60
9	Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. Journal of Proteome Research, 2020, 19, 4163-4178.	3.7	18
10	Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283.	11.9	206
11	The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics, 2020, 17, 297-308.	3.0	40
12	Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization. Journal of Visualized Experiments, 2020, , .	0.3	7
13	A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 2020, 18, e3000599.	5.6	694
14	Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator $C/EBP\hat{l}^2$. Journal of Biological Chemistry, 2020, 295, 2787-2803.	3.4	45
15	Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. ELife, 2020, 9, .	6.0	68
16	Plasma proteomic biomarker signature of age predicts health and life span. ELife, 2020, 9, .	6.0	78
17	Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Frontiers in Microbiology, 2019, 10, 1604.	3.5	122
18	Differential effects of various genetic mouse models of the mechanistic target of rapamycin complex I inhibition on heart failure. GeroScience, 2019, 41, 847-860.	4.6	10

#	Article	IF	CITATIONS
19	Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 2384-2398.	6.1	85
20	Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. MBio, 2019, 10, .	4.1	94
21	Global Lysine Acetylation in <i>Escherichia coli</i> Results from Growth Conditions That Favor Acetate Fermentation. Journal of Bacteriology, 2019, 201, .	2.2	34
22	Removing 4E-BP Enables Synapses to Refine without Postsynaptic Activity. Cell Reports, 2018, 23, 11-22.	6.4	9
23	Protein Turnover in Aging and Longevity. Proteomics, 2018, 18, e1700108.	2.2	78
24	Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 561-570.	3.6	19
25	Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE, 2018, 13, e0208973.	2.5	38
26	Simultaneous Quantification of the Acetylome and Succinylome by †Oneâ€Pot' Affinity Enrichment. Proteomics, 2018, 18, e1800123.	2.2	31
27	Identifying ubiquitinated proteins and aggregates. Aging, 2018, 10, 2549-2550.	3.1	6
28	Mitochondrial-Targeted Catalase. Progress in Molecular Biology and Translational Science, 2017, 146, 203-241.	1.7	55
29	Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging, 2016, 8, 314-327.	3.1	104
30	Stable nuclear expression of <i>ATP8 </i> and <i>ATP6 </i> genes rescues a mtDNA Complex V <i>null </i> mutant. Nucleic Acids Research, 2016, 44, gkw756.	14.5	35
31	Mitochondrialâ€ŧargeted catalase is good for the old mouse proteome, but not for the young:  reverse' antagonistic pleiotropy?. Aging Cell, 2016, 15, 634-645.	6.7	33
32	Age modifies respiratory complex I and protein homeostasis in a muscle typeâ€specific manner. Aging Cell, 2016, 15, 89-99.	6.7	62
33	Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell, 2015, 14, 547-557.	6.7	73
34	Quality control systems in cardiac aging. Ageing Research Reviews, 2015, 23, 101-115.	10.9	31
35	Mitochondrial dysfunction in cardiac aging. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1424-1433.	1.0	103
36	Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB Journal, 2015, 29, 3582-3592.	0.5	69

#	Article	IF	CITATIONS
37	Altered proteome turnover and remodeling by shortâ€ŧerm caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell, 2014, 13, 529-539.	6.7	264
38	Global Proteomics and Pathway Analysis of Pressure-Overloadâ€"Induced Heart Failure and Its Attenuation by Mitochondrial-Targeted Peptides. Circulation: Heart Failure, 2013, 6, 1067-1076.	3.9	126
39	Composition and Acidification of the Culture Medium Influences Chronological Aging Similarly in Vineyard and Laboratory Yeast. PLoS ONE, 2011, 6, e24530.	2.5	61