Pedro Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614409/publications.pdf Version: 2024-02-01

DEDDO ALVADEZ

#	Article	IF	CITATIONS
1	Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment. Journal of Hazardous Materials, 2022, 421, 126805.	12.4	64
2	pH-dependent contribution of chlorine monoxide radicals and byproducts formation during UV/chlorine treatment on clothianidin. Chemical Engineering Journal, 2022, 428, 132444.	12.7	17
3	UV-aging of microplastics increases proximal ARG donor-recipient adsorption and leaching of chemicals that synergistically enhance antibiotic resistance propagation. Journal of Hazardous Materials, 2022, 427, 127895.	12.4	49
4	Renaissance for Phage-Based Bacterial Control. Environmental Science & Technology, 2022, 56, 4691-4701.	10.0	15
5	Bacterial Concentrations and Water Turbulence Influence the Importance of Conjugation Versus Phage-Mediated Antibiotic Resistance Gene Transfer in Suspended Growth Systems. ACS Environmental Au, 2022, 2, 156-165.	7.0	12
6	Phthalate Esters Released from Plastics Promote Biofilm Formation and Chlorine Resistance. Environmental Science & Technology, 2022, 56, 1081-1090.	10.0	31
7	Comment on "Mechanistic Understanding of Superoxide Radical-Mediated Degradation of Perfluorocarboxylic Acids― Environmental Science & Technology, 2022, 56, 5287-5288.	10.0	3
8	Which Micropollutants in Water Environments Deserve More Attention Globally?. Environmental Science & amp; Technology, 2022, 56, 13-29.	10.0	176
9	A Polysulfone/Cobalt Metal–Organic Framework Nanocomposite Membrane with Enhanced Water Permeability and Fouling Resistance. ACS Applied Polymer Materials, 2022, 4, 3532-3542.	4.4	4
10	Cobalt–Copper Nanoparticles on Three-Dimensional Substrate for Efficient Ammonia Synthesis via Electrocatalytic Nitrate Reduction. Journal of Physical Chemistry C, 2022, 126, 6982-6989.	3.1	18
11	Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & amp; Technology, 2022, 56, 7426-7447.	10.0	19
12	Ultrahigh Peroxymonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation and Preferential Electron Transfer during Degradation of Phenols. Environmental Science & Technology, 2022, 56, 8984-8992.	10.0	95
13	Integrating Environmental Dimensions of "One Health―to Combat Antimicrobial Resistance: Essential Research Needs. Environmental Science & Technology, 2022, 56, 14871-14874.	10.0	16
14	Characteristics of Wild Bird Resistomes and Dissemination of Antibiotic Resistance Genes in Interconnected Bird-Habitat Systems Revealed by Similarity of <i>bla</i> _{TEM} Polymorphic Sequences. Environmental Science & Technology, 2022, 56, 15084-15095.	10.0	18
15	Clays play a catalytic role in pyrolytic treatment of crude-oil contaminated soils that is enhanced by ion-exchanged transition metals. Journal of Hazardous Materials, 2022, 437, 129295.	12.4	7
16	Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chemical Engineering Journal, 2022, 448, 137735.	12.7	35
17	Technology assessment of solar disinfection for drinking water treatment. Nature Sustainability, 2022, 5, 801-808.	23.7	30
18	Visible-Light Activation of a Dissolved Organic Matter–TiO ₂ Complex Mediated <i>via</i> Ligand-to-Metal Charge Transfer. Environmental Science & Technology, 2022, 56, 10829-10837.	10.0	17

#	Article	IF	CITATIONS
19	How to Accurately Assess the Intrinsic Activity of Catalysts in Peroxy Activation?. Environmental Science & Technology, 2022, 56, 10557-10559.	10.0	5
20	Directional Oxidation of Amine-Containing Phenolic Pharmaceuticals by Aqueous Dissolved Oxygen under Dark Conditions Catalyzed by Nitrogen-Doped Multiwall Carbon Nanotubes. ACS ES&T Water, 2021, 1, 79-88.	4.6	5
21	Simple preparation method for Styrofoam–TiO ₂ composites and their photocatalytic application for dye oxidation and Cr(<scp>vi</scp>) reduction in industrial wastewater. Environmental Science: Water Research and Technology, 2021, 7, 222-230.	2.4	9
22	Uncover the secret of granule calcification and deactivation in up-flow anaerobic sludge bed (UASB) reactor with long-term exposure to high calcium. Water Research, 2021, 189, 116586.	11.3	29
23	Solar photoelectrochemical synthesis of electrolyte-free H ₂ O ₂ aqueous solution without needing electrical bias and H ₂ . Energy and Environmental Science, 2021, 14, 3110-3119.	30.8	37
24	Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nature Geoscience, 2021, 14, 409-416.	12.9	36
25	Combinatorial Analysis of Sparse Experiments on Photocatalytic Performance of Cement Composites: A Route toward Optimizing Multifunctional Materials for Water Purification. Langmuir, 2021, 37, 5699-5706.	3.5	1
26	Efficient Reduction of Selenite to Elemental Selenium by Liquid-Phase Catalytic Hydrogenation Using a Highly Stable Multiwalled Carbon Nanotube-Supported Pt Catalyst Coated by N-Doped Carbon. ACS Applied Materials & Interfaces, 2021, 13, 29541-29550.	8.0	14
27	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	10.0	10
28	Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. Microbiome, 2021, 9, 150.	11.1	67
29	Spin-State-Dependent Peroxymonosulfate Activation of Single-Atom M–N Moieties via a Radical-Free Pathway. ACS Catalysis, 2021, 11, 9569-9577.	11.2	192
30	Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. Applied and Environmental Microbiology, 2021, 87, e0046821.	3.1	28
31	Integrating Thermal Analysis and Reaction Modeling for Rational Design of Pyrolytic Processes to Remediate Soils Contaminated with Heavy Crude Oil. Environmental Science & Technology, 2021, 55, 11987-11996.	10.0	6
32	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	7.8	3
33	Rapid Metabolism of 1,4-Dioxane to below Health Advisory Levels by Thiamine-Amended <i>Rhodococcus ruber</i> Strain 219. Environmental Science and Technology Letters, 2021, 8, 975-980.	8.7	11
34	High Concentration Organic Wastewater with High Phosphorus Treatment by Facultative MBR. Water (Switzerland), 2021, 13, 2902.	2.7	1
35	Microbial diversity analysis of two full-scale seawater desalination treatment trains provides insights into detrimental biofilm formation. , 2021, 1, 100001.		6
36	Treatment of aqueous solutions of 1,4-dioxane by ozonation and catalytic ozonation with copper oxide (CuO). Environmental Technology (United Kingdom), 2020, 41, 1464-1476.	2.2	11

#	Article	IF	CITATIONS
37	Mechanistic inference on the reaction kinetics of phenols and anilines in carbon nanotubes-activated peroxydisulfate systems: pp-LFERs and QSARs analyses. Chemical Engineering Journal, 2020, 385, 123923.	12.7	48
38	Ammonium Enhances Food Waste Fermentation to High-Value Optically Active <scp>l</scp> -Lactic acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 669-677.	6.7	31
39	High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. Environmental Pollution, 2020, 266, 115200.	7.5	23
40	Discerning the Relevance of Superoxide in PFOA Degradation. Environmental Science and Technology Letters, 2020, 7, 653-658.	8.7	36
41	Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity. Chemical Engineering Journal, 2020, 402, 126183.	12.7	70
42	Hormetic Promotion of Biofilm Growth by Polyvalent Bacteriophages at Low Concentrations. Environmental Science & Technology, 2020, 54, 12358-12365.	10.0	37
43	Why Was My Paper Rejected without Review?. Environmental Science & Technology, 2020, 54, 11641-11644.	10.0	10
44	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	23.7	195
45	Beta-lactam-Induced Outer Membrane Alteration Confers <i>E. coli</i> a Fortuitous Competitive Advantage through Cross-Resistance to Bacteriophages. Environmental Science and Technology Letters, 2020, 7, 428-433.	8.7	5
46	Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation, 2020, 31, 201-211.	3.0	7
47	Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chemical Communications, 2020, 56, 7613-7616.	4.1	6
48	Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds. Science of the Total Environment, 2020, 724, 138291.	8.0	16
49	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	4.3	74
50	2D N-Doped Porous Carbon Derived from Polydopamine-Coated Graphitic Carbon Nitride for Efficient Nonradical Activation of Peroxymonosulfate. Environmental Science & Technology, 2020, 54, 8473-8481.	10.0	316
51	Selective Adsorption and Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Molecularly-Imprinted Graphitic Carbon Nitride. Environmental Science & Technology, 2020, 54, 4621-4630.	10.0	80
52	Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo–Fenton degradation efficiency of bisphenol a under visible light and near–neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124679.	4.7	26
53	Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nature Communications, 2020, 11, 1262.	12.8	33
54	Hierarchical Bi2O2CO3 wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. Water Research, 2020, 184, 116157.	11.3	50

#	Article	IF	CITATIONS
55	Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane. Science of the Total Environment, 2020, 744, 140823.	8.0	17
56	TiO2 microspheres with cross-linked cyclodextrin coating exhibit improved stability and sustained photocatalytic degradation of bisphenol A in secondary effluent. Water Research, 2020, 183, 116095.	11.3	35
57	Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water, 2020, 3, .	8.0	242
58	Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 2020, 173, 115467.	11.3	71
59	Ionic Liquid Enriches the Antibiotic Resistome, Especially Efflux Pump Genes, Before Significantly Affecting Microbial Community Structure. Environmental Science & Technology, 2020, 54, 4305-4315.	10.0	21
60	Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation. Chemosphere, 2020, 247, 125883.	8.2	68
61	The importance of system configuration for distributed direct potable water reuse. Nature Sustainability, 2020, 3, 548-555.	23.7	38
62	Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity. Environmental Pollution, 2020, 263, 114468.	7.5	10
63	Role of Extracellular Polymeric Substances in Microbial Reduction of Arsenate to Arsenite by <i>Escherichia coli</i> and <i>Bacillus subtilis</i> . Environmental Science & Technology, 2020, 54, 6185-6193.	10.0	48
64	Engineering of CoSe ₂ Nanosheets via Vacancy Manipulation for Efficient Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 7800-7809.	4.6	4
65	Cooperative Pollutant Adsorption and Persulfate-Driven Oxidation on Hierarchically Ordered Porous Carbon. Environmental Science & Technology, 2019, 53, 10352-10360.	10.0	127
66	Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. Environment International, 2019, 131, 104986.	10.0	95
67	Specific ion effects on the aggregation behavior of aquatic natural organic matter. Journal of Colloid and Interface Science, 2019, 556, 734-742.	9.4	25
68	Bacteriophages from Arsenic-Resistant Bacteria Transduced Resistance Genes, which Changed Arsenic Speciation and Increased Soil Toxicity. Environmental Science and Technology Letters, 2019, 6, 675-680.	8.7	25
69	Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study. Environmental Science: Nano, 2019, 6, 3539-3550.	4.3	19
70	Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. Environmental Science: Nano, 2019, 6, 136-145.	4.3	11
71	Pilot-Scale Pyrolytic Remediation of Crude-Oil-Contaminated Soil in a Continuously-Fed Reactor: Treatment Intensity Trade-Offs. Environmental Science & Technology, 2019, 53, 2045-2053.	10.0	43
72	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491

5

#	Article	IF	CITATIONS
73	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
74	Going Viral: Emerging Opportunities for Phage-Based Bacterial Control in Water Treatment and Reuse. Accounts of Chemical Research, 2019, 52, 849-857.	15.6	61
75	Hazardous waste dewatering and dry mass reduction through hydrophobic modification by a facile one-pot, alkali-assisted hydrothermal reaction. Water Research, 2019, 155, 225-232.	11.3	24
76	Distributed lump kinetic modeling for slurry phase vacuum residue hydroconversion. Chemical Engineering Journal, 2019, 377, 119811.	12.7	14
77	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. Environmental Science & Technology, 2019, 53, 2937-2947.	10.0	493
78	Quantifying hydrophobicity of natural organic matter using partition coefficients in aqueous two-phase systems. Chemosphere, 2019, 218, 922-929.	8.2	22
79	Threshold Concentrations of Silver Ions Exist for the Sunlight-Induced Formation of Silver Nanoparticles in the Presence of Natural Organic Matter. Environmental Science & Technology, 2018, 52, 4040-4050.	10.0	26
80	Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Applied Microbiology and Biotechnology, 2018, 102, 3375-3386.	3.6	19
81	Pyrolytic Remediation of Oil-Contaminated Soils: Reaction Mechanisms, Soil Changes, and Implications for Treated Soil Fertility. Industrial & Engineering Chemistry Research, 2018, 57, 3489-3500.	3.7	50
82	Gradient reduced aeration in an enhanced aerobic granular sludge process optimizes the dominant microbial community and its function. Environmental Science: Water Research and Technology, 2018, 4, 680-688.	2.4	8
83	Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environmental Toxicology and Chemistry, 2018, 37, 2029-2063.	4.3	429
84	Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid. Applied Surface Science, 2018, 440, 821-829.	6.1	13
85	Development of an analytical method for pesticide residues in berries with dispersive solid phase extraction using multiwalled carbon nanotubes and primary secondary amine sorbents. Analytical Methods, 2018, 10, 757-766.	2.7	16
86	Quantitative structure–activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2. Water Research, 2018, 140, 354-363.	11.3	69
87	Improving Photocatalytic Water Treatment through Nanocrystal Engineering: Mesoporous Nanosheet-Assembled 3D BiOCl Hierarchical Nanostructures That Induce Unprecedented Large Vacancies. Environmental Science & Technology, 2018, 52, 6872-6880.	10.0	63
88	Porous Electrospun Fibers Embedding TiO ₂ for Adsorption and Photocatalytic Degradation of Water Pollutants. Environmental Science & Technology, 2018, 52, 4285-4293.	10.0	286
89	Associating potential 1,4-dioxane biodegradation activity with groundwater geochemical parameters at four different contaminated sites. Journal of Environmental Management, 2018, 206, 60-64.	7.8	8
90	Phosphorous recovery from sewage sludge using calcium silicate hydrates. Chemosphere, 2018, 193, 1087-1093.	8.2	77

#	Article	IF	CITATIONS
91	Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact, 2018, 10, 61-67.	4.5	117
92	Effect of bamboo charcoal amendment on an AnMBR in the aspect of anaerobic habitat and membrane fouling. Environmental Science: Water Research and Technology, 2018, 4, 2058-2069.	2.4	4
93	CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 325-336.	3.9	70
94	Easily Recoverable, Micrometer-Sized TiO ₂ Hierarchical Spheres Decorated with Cyclodextrin for Enhanced Photocatalytic Degradation of Organic Micropollutants. Environmental Science & Technology, 2018, 52, 12402-12411.	10.0	71
95	Self-Damaging Aerobic Reduction of Graphene Oxide by <i>Escherichia coli</i> : Role of GO-Mediated Extracellular Superoxide Formation. Environmental Science & Technology, 2018, 52, 12783-12791.	10.0	35
96	Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon, 2018, 140, 441-448.	10.3	67
97	An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance. Environmental Engineering Science, 2018, 35, 1005-1011.	1.6	47
98	Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology, 2018, 13, 634-641.	31.5	627
99	Elevated Levels of Pathogenic Indicator Bacteria and Antibiotic Resistance Genes after Hurricane Harvey's Flooding in Houston. Environmental Science and Technology Letters, 2018, 5, 481-486.	8.7	65
100	Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil. NanoImpact, 2018, 11, 146-155.	4.5	10
101	Bacterial Endospores as Phage Genome Carriers and Protective Shells. Applied and Environmental Microbiology, 2018, 84, .	3.1	17
102	Dissolved Mineral Ash Generated by Vegetation Fire Is Photoactive under the Solar Spectrum. Environmental Science & Technology, 2018, 52, 10453-10461.	10.0	29
103	1,4â€Dioxaneâ€degrading consortia can be enriched from uncontaminated soils: prevalence of <i>Mycobacterium</i> and soluble diâ€iron monooxygenase genes. Microbial Biotechnology, 2018, 11, 189-198.	4.2	43
104	Extracellular Saccharide-Mediated Reduction of Au ³⁺ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces. Environmental Science & Technology, 2017, 51, 2776-2785.	10.0	159
105	Control of Antibiotic-Resistant Bacteria in Activated Sludge Using Polyvalent Phages in Conjunction with a Production Host. Environmental Science and Technology Letters, 2017, 4, 137-142.	8.7	43
106	Suppression of Enteric Bacteria by Bacteriophages: Importance of Phage Polyvalence in the Presence of Soil Bacteria. Environmental Science & Technology, 2017, 51, 5270-5278.	10.0	42
107	Sunlight Promotes Fast Release of Hazardous Cadmium from Widely-Used Commercial Cadmium Pigment. Environmental Science & Technology, 2017, 51, 6877-6886.	10.0	39
108	Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. Water Research, 2017, 112, 217-225.	11.3	37

#	Article	IF	CITATIONS
109	Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 2017, 325, 223-229.	12.4	159
110	Phosphate Changes Effect of Humic Acids on TiO ₂ Photocatalysis: From Inhibition to Mitigation of Electron–Hole Recombination. Environmental Science & Technology, 2017, 51, 514-521.	10.0	102
111	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environmental Science & Technology, 2017, 51, 13061-13069.	10.0	236
112	1,4-Dioxane Biodegradation by <i>Mycobacterium dioxanotrophicus</i> PH-06 Is Associated with a Group-6 Soluble Di-Iron Monooxygenase. Environmental Science and Technology Letters, 2017, 4, 494-499.	8.7	45
113	Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes. Journal of Environmental Chemical Engineering, 2017, 5, 4185-4193.	6.7	54
114	Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environmental Science & Technology, 2017, 51, 11288-11296.	10.0	514
115	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Technology, 2017, 51, 10274-10281.	10.0	129
116	Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Frontiers of Chemical Science and Engineering, 2017, 11, 387-394.	4.4	19
117	Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environmental Science: Nano, 2017, 4, 1817-1826.	4.3	43
118	Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater. Chemical Engineering Journal, 2017, 330, 596-604.	12.7	101
119	2-Hydroxypropyl-beta-cyclodextrin (HPβCD) reduces age-related lipofuscin accumulation through a cholesterol-associated pathway. Scientific Reports, 2017, 7, 2197.	3.3	10
120	Whole-Genome Sequence of the 1,4-Dioxane-Degrading Bacterium <i>Mycobacterium dioxanotrophicus</i>	0.8	19
121	Aggregation Behavior of Dissolved Black Carbon: Implications for Vertical Mass Flux and Fractionation in Aquatic Systems. Environmental Science & Technology, 2017, 51, 13723-13732.	10.0	95
122	Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency. Nanotoxicology, 2017, 11, 1102-1114.	3.0	22
123	Microbial fuel cell fed by Barnett Shale produced water: Power production by hypersaline autochthonous bacteria and coupling to a desalination unit. Biochemical Engineering Journal, 2017, 117, 87-91.	3.6	53
124	The oxidation capacity of Mn 3 O 4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III). Water Research, 2016, 103, 101-108.	11.3	21
125	Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering, 2016, 2, 426-437.	6.7	188
126	Biogenic versus Thermogenic H ₂ S Source Determination in Bakken Wells: Considerations for Biocide Application. Environmental Science and Technology Letters, 2016, 3, 127-132.	8.7	13

#	Article	IF	CITATIONS
127	Environmental Factors Associated With Natural Methane Occurrence in the Appalachian Basin. Ground Water, 2016, 54, 656-668.	1.3	47
128	Optimizing granules size distribution for aerobic granular sludge stability: Effect of a novel funnel-shaped internals on hydraulic shear stress. Bioresource Technology, 2016, 216, 562-570.	9.6	54
129	Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. Journal of Contaminant Hydrology, 2016, 193, 48-53.	3.3	10
130	Visible Light Sensitized Production of Hydroxyl Radicals Using Fullerol as an Electron-Transfer Mediator. Environmental Science & Technology, 2016, 50, 10545-10553.	10.0	37
131	Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams. NanoImpact, 2016, 3-4, 96-103.	4.5	77
132	Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 2016, 3, 1241-1253.	4.3	101
133	Critical Uncertainties and Gaps in the Environmental- and Social-Impact Assessment of the Proposed Interoceanic Canal through Nicaragua. BioScience, 2016, 66, 632-645.	4.9	12
134	A new frontier in Texas: managing and regulating brackish groundwater. Water Policy, 2016, 18, 727-749.	1.5	7
135	Tin porphyrin immobilization significantly enhances visible-light-photosensitized degradation of Microcystins: Mechanistic implications. Applied Catalysis B: Environmental, 2016, 199, 33-44.	20.2	12
136	Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study. Environmental Science & Technology, 2016, 50, 899-905.	10.0	53
137	Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell. Biochemical Engineering Journal, 2016, 109, 222-227.	3.6	63
138	Facet Energy and Reactivity versus Cytotoxicity: The Surprising Behavior of CdS Nanorods. Nano Letters, 2016, 16, 688-694.	9.1	30
139	Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation. Environmental Science & amp; Technology, 2016, 50, 1218-1226.	10.0	252
140	Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 2016, 82, 808-815.	3.1	99
141	Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons. Environmental Science & Technology, 2016, 50, 2498-2506.	10.0	89
142	Silver nanoparticles temporarily retard NO ₂ â^' production without significantly affecting N ₂ O release by <i>Nitrosomonas europaea</i> . Environmental Toxicology and Chemistry, 2015, 34, 2231-2235.	4.3	13
143	Methods to Assess the Fate and Impacts of Biofuels in Aquifer Systems. Springer Protocols, 2015, , 153-179.	0.3	0
144	Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. Water Research, 2015, 80, 119-129.	11.3	20

#	Article	IF	CITATIONS
145	Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation. Journal of Contaminant Hydrology, 2015, 174, 1-9.	3.3	18
146	Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California. Biodegradation, 2015, 26, 39-50.	3.0	30
147	Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 297-305.	5.3	24
148	Rethink the Nicaragua Canal. Science, 2015, 347, 355-355.	12.6	18
149	Poly(vinylidene fluoride) membrane supported nano zero-valent iron for metronidazole removal: Influences of calcium and bicarbonate ions. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49, 113-118.	5.3	19
150	Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon, 2015, 94, 531-538.	10.3	81
151	Sublethal Concentrations of Silver Nanoparticles Stimulate Biofilm Development. Environmental Science and Technology Letters, 2015, 2, 221-226.	8.7	71
152	Scientists Raise Alarms about Fast Tracking of Transoceanic Canal through Nicaragua. Environmental Science & Technology, 2015, 49, 3989-3996.	10.0	15
153	Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environmental Pollution, 2015, 198, 154-160.	7.5	10
154	Inhibitory effect of natural organic matter or other background constituents on photocatalytic advanced oxidation processes: Mechanistic model development and validation. Water Research, 2015, 84, 362-371.	11.3	125
155	Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Research, 2015, 85, 458-466.	11.3	448
156	Granular activated carbon as nucleating agent for aerobic sludge granulation: Effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior. Bioresource Technology, 2015, 198, 358-363.	9.6	69
157	Fluorescence Reports Intact Quantum Dot Uptake into Roots and Translocation to Leaves of <i>Arabidopsis thaliana</i> and Subsequent Ingestion by Insect Herbivores. Environmental Science & Technology, 2015, 49, 626-632.	10.0	117
158	Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release. Water Research, 2015, 68, 479-486.	11.3	12
159	Microbial fuel cells under extreme salinity: performance and microbial analysis. Environmental Chemistry, 2015, 12, 293.	1.5	36
160	Elucidating the genetic basis for <i>Escherichia coli</i> defense against silver toxicity using mutant arrays. Environmental Toxicology and Chemistry, 2014, 33, 993-997.	4.3	16
161	Nanotechnology-Enabled Water Disinfection and Microbial Control. , 2014, , 319-327.		3
162	Microbial Dynamics and Control in Shale Gas Production. Environmental Science and Technology Letters, 2014. 1, 465-473.	8.7	44

#	Article	IF	CITATIONS
163	Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environmental Toxicology and Chemistry, 2014, 33, 2234-2239.	4.3	35
164	Genotoxicity and Cytotoxicity of Cadmium Sulfide Nanomaterials to Mice: Comparison Between Nanorods and Nanodots. Environmental Engineering Science, 2014, 31, 373-380.	1.6	30
165	Arsenic Removal by Nanoscale Magnetite in Guanajuato, Mexico. Environmental Engineering Science, 2014, 31, 393-402.	1.6	23
166	Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration and Biodegradation, 2014, 91, 82-87.	3.9	51
167	Bacterial Signaling Ecology and Potential Applications During Aquatic Biofilm Construction. Microbial Ecology, 2014, 68, 24-34.	2.8	10
168	Influence of carbon and metal oxide nanomaterials on aqueous concentrations of the munition constituents cyclotrimethylenetrinitramine (RDX) and tungsten. Environmental Toxicology and Chemistry, 2014, 33, 1035-1042.	4.3	0
169	Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 2014, 48, 317-325.	11.3	155
170	Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays. Environmental Science & Technology, 2014, 48, 8298-8306.	10.0	111
171	Microbial Extracellular Polymeric Substances Reduce Ag ⁺ to Silver Nanoparticles and Antagonize Bactericidal Activity. Environmental Science & Technology, 2014, 48, 316-322.	10.0	243
172	C60 aminofullerene-magnetite nanocomposite designed for efficient visible light photocatalysis and magnetic recovery. Carbon, 2014, 69, 92-100.	10.3	31
173	Persistence of Extracellular DNA in River Sediment Facilitates Antibiotic Resistance Gene Propagation. Environmental Science & Technology, 2014, 48, 71-78.	10.0	345
174	Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend Releases. Environmental Science & Technology, 2014, 48, 474-481.	10.0	29
175	The Abundance of Tetrahydrofuran/Dioxane Monooxygenase Genes (<i>thmA</i> / <i>dxmA</i>) and 1,4-Dioxane Degradation Activity Are Significantly Correlated at Various Impacted Aquifers. Environmental Science and Technology Letters, 2014, 1, 122-127.	8.7	49
176	Environmental, Economic, and Energy Assessment of the Ultimate Analysis and Moisture Content of Municipal Solid Waste in a Parallel Co-combustion Process. Energy & Fuels, 2014, 28, 1453-1462.	5.1	10
177	Proliferation of Multidrug-Resistant New Delhi Metallo-β-lactamase Genes in Municipal Wastewater Treatment Plants in Northern China. Environmental Science and Technology Letters, 2014, 1, 26-30.	8.7	133
178	Transport of Gold Nanoparticles through Plasmodesmata and Precipitation of Gold Ions in Woody Poplar. Environmental Science and Technology Letters, 2014, 1, 146-151.	8.7	188
179	Assessment of microbial communities associated with fermentative–methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation, 2014, 25, 681-691.	3.0	30
180	Uptake, Translocation, and Transformation of Quantum Dots with Cationic versus Anionic Coatings by <i>Populus deltoides</i> Å— <i>nigra</i> Cuttings. Environmental Science & Technology, 2014, 48, 6754-6762.	10.0	53

#	Article	IF	CITATIONS
181	Manganese Peroxidase Degrades Pristine but Not Surface-Oxidized (Carboxylated) Single-Walled Carbon Nanotubes. Environmental Science & Technology, 2014, 48, 7918-7923.	10.0	68
182	Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Research, 2014, 60, 259-266.	11.3	145
183	Recombination-assisted megaprimer (RAM) cloning. MethodsX, 2014, 1, 23-29.	1.6	10
184	Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species. Environmental Science & Technology, 2013, 47, 14080-14088.	10.0	93
185	Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation, 2013, 24, 333-341.	3.0	42
186	Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases. Current Opinion in Biotechnology, 2013, 24, 457-466.	6.6	24
187	Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts of Chemical Research, 2013, 46, 834-843.	15.6	607
188	Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential. Environmental Pollution, 2013, 178, 419-425.	7.5	14
189	Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. Journal of Hazardous Materials, 2013, 262, 456-463.	12.4	68
190	Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. Journal of Hazardous Materials, 2013, 260, 434-441.	12.4	41
191	Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Applied Catalysis B: Environmental, 2013, 140-141, 468-477.	20.2	35
192	Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere, 2013, 90, 2315-2319.	8.2	30
193	Applications of nanotechnology in water and wastewater treatment. Water Research, 2013, 47, 3931-3946.	11.3	1,919
194	Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen ycling bacteria. Environmental Toxicology and Chemistry, 2013, 32, 1488-1494.	4.3	151
195	Phytostimulation of Poplars and <i>Arabidopsis</i> Exposed to Silver Nanoparticles and Ag ⁺ at Sublethal Concentrations. Environmental Science & Technology, 2013, 47, 5442-5449.	10.0	201
196	Climate Change Would Increase the Water Intensity of Irrigated Corn Ethanol. Environmental Science & Technology, 2013, 47, 6030-6037.	10.0	26
197	Tetracycline Resistance Gene Maintenance under Varying Bacterial Growth Rate, Substrate and Oxygen Availability, and Tetracycline Concentration. Environmental Science & Technology, 2013, 47, 6995-7001.	10.0	77
198	Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate. Journal of Contaminant Hydrology, 2013, 146, 1-7.	3.3	9

#	Article	IF	CITATIONS
199	Widespread Distribution of Soluble Di-Iron Monooxygenase (SDIMO) Genes in Arctic Groundwater Impacted by 1,4-Dioxane. Environmental Science & Technology, 2013, 47, 9950-9958.	10.0	51
200	Will Nicaragua's Interoceanic Canal Result in an Environmental Catastrophe for Central America?. Environmental Science & Technology, 2013, 47, 13217-13219.	10.0	15
201	Convergence Platforms: Earth-Scale Systems. Science Policy Reports, 2013, , 95-137.	0.1	3
202	Implications: Convergence of Knowledge and Technology for a Sustainable Society. Science Policy Reports, 2013, , 371-431.	0.1	3
203	Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol. Environmental Science & Technology, 2012, 46, 6013-6019.	10.0	50
204	Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C ₆₀ Aminofullerene Systems. Environmental Science & Technology, 2012, 46, 9606-9613.	10.0	190
205	Relative Susceptibility and Transcriptional Response of Nitrogen Cycling Bacteria to Quantum Dots. Environmental Science & Technology, 2012, 46, 3433-3441.	10.0	43
206	Defense Mechanisms of <i>Pseudomonas aeruginosa</i> PAO1 against Quantum Dots and Their Released Heavy Metals. ACS Nano, 2012, 6, 6091-6098.	14.6	89
207	Impact of Sunlight and Humic Acid on the Deposition Kinetics of Aqueous Fullerene Nanoparticles (nC ₆₀). Environmental Science & Technology, 2012, 46, 13455-13462.	10.0	58
208	Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted <i>Chromobacterium</i> oxidase. Biotechnology and Bioengineering, 2012, 109, 2409-2415.	3.3	22
209	Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters, 2012, 12, 4271-4275.	9.1	1,830
210	Kinetics Analysis of Palladium/Gold Nanoparticles as Colloidal Hydrodechlorination Catalysts. ACS Catalysis, 2011, 1, 128-138.	11.2	55
211	BTEX Plume Dynamics Following an Ethanol Blend Release: Geochemical Footprint and Thermodynamic Constraints on Natural Attenuation. Environmental Science & amp; Technology, 2011, 45, 3422-3429.	10.0	58
212	Nanotechnology Environmental, Health, and Safety Issues. , 2011, , 159-220.		5
213	Cellular and Transcriptional Response of <i>Pseudomonas stutzeri</i> to Quantum Dots under Aerobic and Denitrifying Conditions. Environmental Science & Technology, 2011, 45, 4988-4994.	10.0	55
214	Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions. Environmental Science & Technology, 2011, 45, 9003-9008.	10.0	466
215	Photosensitized Oxidation of Emerging Organic Pollutants by Tetrakis C ₆₀ Aminofullerene-Derivatized Silica under Visible Light Irradiation. Environmental Science & Technology, 2011, 45, 10598-10604.	10.0	107
216	Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 2011, 45, 1827-1833.	10.0	786

#	Article	IF	CITATIONS
217	Guest Comment: Nanoscale Metalâ^'Organic Matter Interactions. Environmental Science & Technology, 2011, 45, 3194-3195.	10.0	4
218	Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 2011, 45, 1995-2001.	11.3	245
219	Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends in Food Science and Technology, 2011, 22, 618-624.	15.1	135
220	Biodegradation of Soybean and Castor Oil Biodiesel: Implications on the Natural Attenuation of Monoaromatic Hydrocarbons in Groundwater. Ground Water Monitoring and Remediation, 2011, 31, 111-118.	0.8	34
221	Aesthetic Groundwater Quality Impacts from a Continuous Pilotâ€Scale Release of an Ethanol Blend. Ground Water Monitoring and Remediation, 2011, 31, 47-54.	0.8	19
222	Rapid Analysis of 1,4â€Ðioxane in Groundwater by Frozen Microâ€Extraction with Gas Chromatography/Mass Spectrometry. Ground Water Monitoring and Remediation, 2011, 31, 70-76.	0.8	38
223	Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology and Biochemistry, 2011, 43, 1732-1737.	8.8	136
224	Avoidance, weight loss, and cocoon production assessment for <i>Eisenia fetida</i> exposed to C ₆₀ in soil. Environmental Toxicology and Chemistry, 2011, 30, 2542-2545.	4.3	18
225	Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts. Catalysis Today, 2011, 160, 96-102.	4.4	57
226	Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal. Water Science and Technology, 2011, 63, 2346-2352.	2.5	13
227	Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano, 2010, 4, 3580-3590.	14.6	616
228	Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity. Biodegradation, 2010, 21, 425-430.	3.0	8
229	Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material. Biodegradation, 2010, 21, 793-800.	3.0	30
230	Comparing the effects of various fuel alcohols on the natural attenuation of Benzene Plumes using a general substrate interaction model. Journal of Contaminant Hydrology, 2010, 113, 66-76.	3.3	19
231	Adsorption of tetracycline on singleâ€walled and multiâ€walled carbon nanotubes as affected by aqueous solution chemistry. Environmental Toxicology and Chemistry, 2010, 29, 2713-2719.	4.3	174
232	Developmental phytotoxicity of metal oxide nanoparticles to <i>Arabidopsis thaliana</i> . Environmental Toxicology and Chemistry, 2010, 29, 669-675.	4.3	474
233	Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 2010, 101, 1141-1146.	9.6	227
234	7-Ketocholesterol Catabolism by <i>Rhodococcus jostii</i> RHA1. Applied and Environmental Microbiology, 2010, 76, 352-355.	3.1	27

#	Article	IF	CITATIONS
235	Opinion: The water footprint of biofuel production in the USA. Biofuels, 2010, 1, 255-260.	2.4	8
236	Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale Zerovalent Iron to <i>E. coli</i> . Environmental Science & Technology, 2010, 44, 3462-3467.	10.0	304
237	Stability of Water-Stable C ₆₀ Clusters to OH Radical Oxidation and Hydrated Electron Reduction. Environmental Science & amp; Technology, 2010, 44, 3786-3792.	10.0	30
238	Effect of Bare and Coated Nanoscale Zerovalent Iron on <i>tceA</i> and <i>vcrA</i> Gene Expression in <i>Dehalococcoides</i> spp Environmental Science & Technology, 2010, 44, 7647-7651.	10.0	91
239	Visible Light Sensitized Inactivation of MS-2 Bacteriophage by a Cationic Amine-Functionalized C ₆₀ Derivative. Environmental Science & Technology, 2010, 44, 6685-6691.	10.0	60
240	Bioaccumulation of ¹⁴ C ₆₀ by the Earthworm <i>Eisenia fetida</i> . Environmental Science & Technology, 2010, 44, 9170-9175.	10.0	54
241	C ₆₀ Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst. Environmental Science & Technology, 2010, 44, 9488-9495.	10.0	73
242	1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Research, 2010, 44, 2894-2900.	11.3	69
243	Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental Science & Technology, 2010, 44, 7220-7225.	10.0	661
244	UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC ₆₀) Nanoparticles. Environmental Science & Technology, 2010, 44, 7821-7826.	10.0	95
245	Medical Bioremediation: A Concept Moving Toward Reality. Rejuvenation Research, 2009, 12, 411-419.	1.8	20
246	Performance Assessment of Bioremediation and Natural Attenuation. Critical Reviews in Environmental Science and Technology, 2009, 39, 209-270.	12.8	58
247	Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleumâ€contaminated site. Microbial Biotechnology, 2009, 2, 202-212.	4.2	54
248	Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. Journal of Catalysis, 2009, 267, 97-104.	6.2	93
249	In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films. Macromolecular Rapid Communications, 2009, 30, 1116-1122.	3.9	143
250	Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology, 2009, 84, 158-166.	3.2	127
251	Understanding and harnessing the microaerobic metabolism of glycerol in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2009, 103, 148-161.	3.3	169
252	Pore Water Characteristics Following a Release of Neat Ethanol onto Preâ€existing NAPL. Ground Water Monitoring and Remediation, 2009, 29, 93-104.	0.8	26

#	Article	IF	CITATIONS
253	Photochemical and Antimicrobial Properties of Novel C ₆₀ Derivatives in Aqueous Systems. Environmental Science & Technology, 2009, 43, 6604-6610.	10.0	127
254	Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43, 715-723.	11.3	718
255	Comparative Photoactivity and Antibacterial Properties of C ₆₀ Fullerenes and Titanium Dioxide Nanoparticles. Environmental Science & Technology, 2009, 43, 4355-4360.	10.0	410
256	Medical bioremediation of age-related diseases. Microbial Cell Factories, 2009, 8, 21.	4.0	21
257	The Water Footprint of Biofuels: A Drink or Drive Issue?. Environmental Science & Technology, 2009, 43, 3005-3010.	10.0	316
258	Research Priorities to Advance Eco-Responsible Nanotechnology. ACS Nano, 2009, 3, 1616-1619.	14.6	122
259	Nanotechnology-Enabled Water Disinfection and Microbial Control: Merits and Limitations. , 2009, , 157-166.		8
260	Modeling the natural attenuation of benzene in groundwater impacted by ethanolâ€blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes. Water Resources Research, 2009, 45, .	4.2	23
261	Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation, 2008, 19, 545-553.	3.0	13
262	Microbial degradation of 7-ketocholesterol. Biodegradation, 2008, 19, 807-813.	3.0	25
263	Assessing the antibiofouling potential of a fullerene-coated surface. International Biodeterioration and Biodegradation, 2008, 62, 475-478.	3.9	26
264	Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environmental Toxicology and Chemistry, 2008, 27, 1888-1894.	4.3	132
265	Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27, 1825-1851.	4.3	2,370
266	Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilotâ€scale aquifer tank. Environmental Microbiology, 2008, 10, 2236-2244.	3.8	36
267	Properties of Membranes Containing Semi-dispersed Carbon Nanotubes. Environmental Engineering Science, 2008, 25, 565-576.	1.6	95
268	Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general substrate interaction module. Water Resources Research, 2008, 44, .	4.2	27
269	Mechanisms of Photochemistry and Reactive Oxygen Production by Fullerene Suspensions in Water. Environmental Science & Technology, 2008, 42, 4175-4180.	10.0	145
270	Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008, 42, 4591-4602.	11.3	2,019

#	Article	IF	CITATIONS
271	Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental Pollution, 2008, 151, 669-677.	7.5	115
272	Antibacterial Activity of Fullerene Water Suspensions (nC ₆₀) Is Not Due to ROS-Mediated Damage. Nano Letters, 2008, 8, 1539-1543.	9.1	249
273	Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life. Water Science and Technology, 2008, 57, 1533-1538.	2.5	67
274	Quantum Dot Weathering Results in Microbial Toxicity. Environmental Science & Technology, 2008, 42, 9424-9430.	10.0	187
275	Fullerene Water Suspension (nC ₆₀) Exerts Antibacterial Effects via ROS-Independent Protein Oxidation. Environmental Science & Technology, 2008, 42, 8127-8132.	10.0	215
276	Exploring the Correlation between Halorespirer Biomarker Concentrations and TCE Dechlorination Rates. Journal of Environmental Engineering, ASCE, 2008, 134, 895-901.	1.4	22
277	Removal of Volatile Organic Compounds at Extreme Shock-Loading Using a Scaled-Up Pilot Rotating Drum Biofilter. Journal of the Air and Waste Management Association, 2008, 58, 1407-1414.	1.9	5
278	Microbial Characterization of Groundwater Undergoing Treatment with a Permeable Reactive Iron Barrier. Environmental Engineering Science, 2007, 24, 1122-1127.	1.6	18
279	Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank. Water Research, 2007, 41, 656-664.	11.3	42
280	Inactivation of Bacteriophages via Photosensitization of Fullerol Nanoparticles. Environmental Science & Technology, 2007, 41, 6627-6632.	10.0	144
281	Effect of a Fullerene Water Suspension on Bacterial Phospholipids and Membrane Phase Behavior. Environmental Science & Technology, 2007, 41, 2636-2642.	10.0	232
282	Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition. , 2007, , .		0
283	Assessment of anaerobic benzene degradation potential using 16S rRNA gene-targeted real-time PCR. Environmental Microbiology, 2007, 9, 72-80.	3.8	42
284	DEVELOPMENTAL TOXICITY IN ZEBRAFISH (DANIO RERIO) EMBRYOS AFTER EXPOSURE TO MANUFACTURED NANOMATERIALS: BUCKMINSTERFULLERENE AGGREGATES (nC60) AND FULLEROL. Environmental Toxicology and Chemistry, 2007, 26, 976.	4.3	190
285	Assessing the Risks of Manufactured Nanomaterials. Environmental Science & Technology, 2006, 40, 4336-4345.	10.0	1,018
286	Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology, 2006, 54, 327-334.	2.5	143
287	Biological activation ofÂhydrous ferric oxide forÂreduction ofÂhexavalent chromium inÂtheÂpresence ofÂdifferent anions. European Journal of Soil Biology, 2006, 42, 99-106.	3.2	11
288	Antibacterial Activity of Fullerene Water Suspensions:Â Effects of Preparation Method and Particle Sizeâ€. Environmental Science & Technology, 2006, 40, 4360-4366.	10.0	515

#	Article	IF	CITATIONS
289	Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 2006, 40, 3527-3532.	11.3	1,341
290	Comparison of Bioaugmentation and Biostimulation for the Enhancement of Dense Nonaqueous Phase Liquid Source Zone Bioremediation. Water Environment Research, 2006, 78, 2456-2465.	2.7	40
291	Transport of antibiotic-resistant bacteria and resistance-carrying plasmids through porous media. Water Science and Technology, 2006, 54, 363-370.	2.5	15
292	EFFECT OF SIMULATED RHIZODEPOSITION ON THE RELATIVE ABUNDANCE OF POLYNUCLEAR AROMATIC HYDROCARBON CATABOLIC GENES IN A CONTAMINATED SOIL. Environmental Toxicology and Chemistry, 2006, 25, 386.	4.3	25
293	Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Applied Catalysis B: Environmental, 2006, 69, 115-125.	20.2	258
294	Nanotechnology in the Environment—The Good, the Bad, and the Ugly. Journal of Environmental Engineering, ASCE, 2006, 132, 1233-1233.	1.4	14
295	Phenanthrene Removal by <i>Penicillium frequentans</i> Grown on a Solid-State Culture: Effect of Oxygen Concentration. Environmental Technology (United Kingdom), 2006, 27, 1073-1080.	2.2	18
296	Geochemical Attenuation Mechanisms. , 2005, , 25-48.		0
297	Biodegradation Principles. , 2005, , 49-114.		4
298	Fundamentals of Groundwater Flow and Contaminant Transport Processes. , 2005, , 115-167.		2
299	Fate and Transport Equations and Analytical Models for Natural Attenuation. , 2005, , 169-199.		0
300	Numerical Modeling of Contaminant Transport, Transformation, and Degradation Processes. , 2005, , 201-282.		0
301	Field and Laboratory Methods to Determine Parameters for Modeling Contaminant Fate and Transport in Groundwater. , 2005, , 283-349.		0
302	Bioremediation Technologies. , 2005, , 351-455.		1
303	Performance Assessment and Demonstration of Bioremediation and Natural Attenuation. , 2005, , 457-525.		0
304	Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation, 2005, 16, 105-114.	3.0	51
305	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation, 2005, 16, 539-547.	3.0	56
	Sustained and Complete Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Degradation in Zero-Valent Iron		

306 Simulated Barriers under Different Microbial Conditions. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Ov**2**/2ock 10 **If** 50 57 Td

#	Article	IF	CITATIONS
307	A Model for the Effect of Rhizodeposition on the Fate of Phenanthrene in Aged Contaminated Soil. Environmental Science & Technology, 2005, 39, 9669-9675.	10.0	24
308	Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environmental Pollution, 2005, 136, 477-484.	7.5	171
309	Medical bioremediation: Prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Research Reviews, 2005, 4, 315-338.	10.9	34
310	Nitrate and Nitrite Reduction by Fe0: Influence of Mass Transport, Temperature, and Denitrifying Microbes. Environmental Engineering Science, 2004, 21, 219-229.	1.6	51
311	Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns. Applied and Environmental Microbiology, 2004, 70, 4720-4726.	3.1	121
312	Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environmental Microbiology, 2004, 6, 574-583.	3.8	134
313	Removal of Explosives Using an Integrated Iron?Microbial Treatment in Flow-Through Columns. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 1-8.	2.7	5
314	Effect of ethanol, acetate, and phenol on toluene degradation activity andtod-lux expression inPseudomonas putida TOD102: evaluation of the metabolic flux dilution model. Biotechnology and Bioengineering, 2004, 86, 801-808.	3.3	41
315	Effect of Root-Derived Substrates on the Expression ofnah-luxGenes inPseudomonas fluorescensHK44: Implications for PAH Biodegradation in the Rhizosphere. Environmental Science & Technology, 2004, 38, 1740-1745.	10.0	95
316	Effect of FeO quantity on the efficiency of integrated microbial-FeO treatment processes. Chemosphere, 2004, 54, 823-829.	8.2	36
317	The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations. Water Research, 2004, 38, 2529-2536.	11.3	35
318	Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Research, 2004, 38, 3705-3712.	11.3	134
319	A Comparison of Benzene and Toluene Plume Lengths for Sites Contaminated with Regular vs. Ethanol-Amended Gasoline. Ground Water Monitoring and Remediation, 2003, 23, 48-53.	0.8	43
320	Stimulation of Hybrid Poplar Growth in Petroleum-Contaminated Soils through Oxygen Addition and Soil Nutrient Amendments. International Journal of Phytoremediation, 2003, 5, 57-72.	3.1	25
321	Effects of Ethanol versus MTBE on Benzene, Toluene, Ethylbenzene, and Xylene Natural Attenuation in Aquifer Columns. Journal of Environmental Engineering, ASCE, 2002, 128, 862-867.	1.4	79
322	Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies. Journal of Environmental Engineering, ASCE, 2002, 128, 868-875.	1.4	35
323	A Real-Time Polymerase Chain Reaction Method for Monitoring Anaerobic, Hydrocarbon-Degrading Bacteria Based on a Catabolic Gene. Environmental Science & Technology, 2002, 36, 3977-3984.	10.0	197
324	Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Research, 2002, 36, 1973-1982.	11.3	119

#	Article	IF	CITATIONS
325	Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Research, 2002, 36, 3739-3746.	11.3	80
326	Effect of ethanol and methylâ€ <i>Tert</i> â€butyl ether on monoaromatic hydrocarbon biodegradation: Response variability for different aquifer materials under various electronâ€accepting conditions. Environmental Toxicology and Chemistry, 2002, 21, 2631-2639.	4.3	57
327	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (Rdx) Degradation in Biologically-Active Iron Columns. Water, Air, and Soil Pollution, 2002, 141, 325-335.	2.4	22
328	EFFECT OF ETHANOL AND METHYL-TERT-BUTYL ETHER ON MONOAROMATIC HYDROCARBON BIODEGRADATION: RESPONSE VARIABILITY FOR DIFFERENT AQUIFER MATERIALS UNDER VARIOUS ELECTRON-ACCEPTING CONDITIONS. Environmental Toxicology and Chemistry, 2002, 21, 2631.	4.3	10
329	Effect of ethanol and methyl-tert-butyl ether on monoaromatic hydrocarbon biodegradation: response variability for different aquifer materials under various electron-accepting conditions. Environmental Toxicology and Chemistry, 2002, 21, 2631-9.	4.3	8
330	The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Revista Latinoamericana De MicrobiologÃa, 2002, 44, 83-104.	0.1	10
331	The Transport and Fate of Ethanol and BTEX in Groundwater Contaminated by Gasohol. Critical Reviews in Environmental Science and Technology, 2001, 31, 79-123.	12.8	135
332	PCB BIODEGRADATION IN AGED CONTAMINATED SOIL: INTERACTIONS BETWEEN EXOGENOUSPHANEROCHAETE CHRYSOSPORIUMAND INDIGENOUS MICROORGANISMS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 1145-1162.	1.7	24
333	Heavy metal removal with mexican clinoptilolite:. Water Research, 2001, 35, 373-378.	11.3	307
334	Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with amycolata sp. CB1190. Water Research, 2001, 35, 3791-3800.	11.3	64
335	Hexahydro-1,3,5-trinitro-1,3,5-triazine Mineralization by Zerovalent Iron and Mixed Anaerobic Cultures. Environmental Science & Technology, 2001, 35, 4341-4346.	10.0	127
336	Peer Reviewed: Will Ethanol-Blended Gasoline Affect Groundwater Quality?. Environmental Science & Technology, 2001, 35, 24A-30A.	10.0	55
337	RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Science and Technology, 2001, 43, 25-33.	2.5	161
338	Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 2001, 175, 198-207.	2.2	516
339	Effect of C/N/P ratio and nonionic surfactants on polychlorinated biphenyl biodegradation. World Journal of Microbiology and Biotechnology, 2000, 16, 319-324.	3.6	13
340	Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene. Applied Microbiology and Biotechnology, 2000, 54, 382-389.	3.6	35
341	Phospholipids of Five Pseudomonad Archetypes for Different Toluene Degradation Pathways. Bioremediation Journal, 2000, 4, 181-185.	2.0	2
342	Phytoremediation of 1,4-Dioxane by Hybrid Poplar Trees. Water Environment Research, 2000, 72, 313-321.	2.7	81

#	Article	IF	CITATIONS
343	Combined Microbial-Fe(0) Treatment System to Remove Nitrate from Contaminated Groundwater. Bioremediation Journal, 2000, 4, 149-154.	2.0	10
344	Chemistry and Microbiology of Permeable Reactive Barriers forIn SituGroundwater Clean up. Critical Reviews in Environmental Science and Technology, 2000, 30, 363-411.	12.8	256
345	A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Organic Geochemistry, 2000, 31, 881-887.	1.8	33
346	Expression and longevity of toluene dioxygenase in Pseudomonas putida F1 induced at different dissolved oxygen concentrations. Water Research, 2000, 34, 3014-3018.	11.3	23
347	Chemistry and Microbiology of Permeable Reactive Barriers forIn SituGroundwater Clean up. Critical Reviews in Microbiology, 2000, 26, 221-264.	6.1	142
348	Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities. , 1999, 10, 331-340.		52
349	Caution Against Interpreting Gasoline Release Dates Based on BTEX Ratios in Ground Water. Ground Water Monitoring and Remediation, 1998, 18, 69-76.	0.8	13
350	The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation. Water Research, 1998, 32, 2065-2072.	11.3	124
351	Use of Benzoate to Establish Reactive Buffer Zones for Enhanced Attenuation of BTX Migration:Â Aquifer Column Experiments. Environmental Science & Technology, 1998, 32, 509-515.	10.0	20
352	Fe(0)-Supported Autotrophic Denitrification. Environmental Science & Technology, 1998, 32, 634-639.	10.0	285
353	The effect of static magnetic fields on biological systems: Implications for enhanced biodegradation. Critical Reviews in Environmental Science and Technology, 1997, 27, 319-382.	12.8	33
354	Utilization of Cathodic Hydrogen as Electron Donor for Chloroform Cometabolism by a Mixed, Methanogenic Culture. Environmental Science & Technology, 1997, 31, 880-885.	10.0	103
355	Uptake and transformation of trichloroethylene by edible garden plants. Water Research, 1997, 31, 816-824.	11.3	61
356	Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environmental Toxicology and Chemistry, 1997, 16, 1318-1321.	4.3	138
357	EFFECT OF HYBRID POPLAR TREES ON MICROBIAL POPULATIONS IMPORTANT TO HAZARDOUS WASTE BIOREMEDIATION. Environmental Toxicology and Chemistry, 1997, 16, 1318.	4.3	13
358	Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton's reagent. Water Research, 1996, 30, 2579-2586.	11.3	95
359	Relationship between the concentration of denitrifiers and Pseudomonas spp. in soils: Implications for BTX bioremediation. Water Research, 1996, 30, 3139-3145.	11.3	2
360	Natural bioremediation perspective for BTX-contaminated groundwater in Brazil: effect of ethanol. Water Science and Technology, 1996, 34, 311-318.	2.5	17

#	Article	IF	CITATIONS
361	Natural bioremediation perspective for btx-contaminated ground water in brazil: effect of ethanol. Water Science and Technology, 1996, 34, 311.	2.5	13
362	Caution Against the Inappropriate Use of Analytical Fate and Transport Models to Estimate the Age and Risk of Petroleum Product Releases. Ground Water Monitoring and Remediation, 1996, 16, 72-76.	0.8	0
363	Implications of the Presence of Ethanol on Intrinsic Bioremediation of BTX Plumes in Brazil. Hazardous Waste and Hazardous Materials, 1996, 13, 213-221.	0.4	14
364	Reductive dechlorination of carbon tetrachloride with elemental iron. Journal of Hazardous Materials, 1995, 41, 205-216.	12.4	111
365	Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Water Science and Technology, 1995, 31, 15.	2.5	33
366	Kinetics of Toluene Degradation by Denitrifying Aquifer Microorganisms. Journal of Environmental Engineering, ASCE, 1994, 120, 1327-1336.	1.4	30
367	Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Water Research, 1993, 27, 685-691.	11.3	64
368	Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons With experimental measurements. Water Resources Research, 1992, 28, 1833-1847.	4.2	149
369	Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material. Biodegradation, 1991, 2, 43-51.	3.0	131
370	Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Applied and Environmental Microbiology, 1991, 57, 2981-2985.	3.1	302