
Stephen G Withers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature, 2001, 412, 835-838.	27.8	588
2	Glycosynthases:  Mutant Glycosidases for Oligosaccharide Synthesis. Journal of the American Chemical Society, 1998, 120, 5583-5584.	13.7	513
3	Glycosidase mechanisms. Current Opinion in Chemical Biology, 2000, 4, 573-580.	6.1	447
4	X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural Biology, 1999, 6, 432-436.	9.7	348
5	The structure of human pancreatic <i>α</i> -amylase at 1.8 à resolution and comparisons with related enzymes. Protein Science, 1995, 4, 1730-1742.	7.6	333
6	Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Structural Biology, 2001, 8, 166-175.	9.7	313
7	Mechanism of Agrobacterium .betaglucosidase: kinetic studies. Biochemistry, 1992, 31, 9961-9969.	2.5	304
8	Mutagenesis of Glycosidases. Annual Review of Biochemistry, 1999, 68, 487-522.	11.1	280
9	The pKaof the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis:Â A13C-NMR Study ofBacillus circulansXylanaseâ€. Biochemistry, 1996, 35, 9958-9966.	2.5	269
10	Engineering of glycosidases and glycosyltransferases. Current Opinion in Chemical Biology, 2006, 10, 509-519.	6.1	267
11	Snapshots along an Enzymatic Reaction Coordinate: Analysis of a Retaining β-Glycoside Hydrolaseâ€,‡. Biochemistry, 1998, 37, 11707-11713.	2.5	255
12	NAG-thiazoline, An N-Acetyl-β-hexosaminidase Inhibitor That Implicates Acetamido Participation. Journal of the American Chemical Society, 1996, 118, 6804-6805.	13.7	248
13	Crystallographic Evidence for Substrate-assisted Catalysis in a Bacterial β-Hexosaminidase. Journal of Biological Chemistry, 2001, 276, 10330-10337.	3.4	239
14	Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a retaining glycosidase. Journal of the American Chemical Society, 1990, 112, 5887-5889.	13.7	236
15	Subsite Mapping of the Human Pancreatic α-Amylase Active Site through Structural, Kinetic, and Mutagenesis Techniquesâ€,‡. Biochemistry, 2000, 39, 4778-4791.	2.5	231
16	Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the ph optimum of a glycosidase 1 1Edited by M. F. Summers. Journal of Molecular Biology, 2000, 299, 255-279.	4.2	214
17	High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods, 2006, 3, 609-614.	19.0	211
18	Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase-glucose complex. Biochemistry, 1986, 25, 6021-6027.	2.5	207

#	Article	IF	CITATIONS
19	Glycosyl fluorides in enzymatic reactions. Carbohydrate Research, 2000, 327, 27-46.	2.3	207
20	A Structural View of the Action ofEscherichia coli(lacZ) β-Galactosidaseâ€,‡. Biochemistry, 2001, 40, 14781-14794.	2.5	207
21	Structural Insights into the Catalytic Mechanism of Trypanosoma cruzi trans-Sialidase. Structure, 2004, 12, 775-784.	3.3	197
22	Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nature Structural and Molecular Biology, 2004, 11, 163-170.	8.2	196
23	Trypanosoma cruziTrans-sialidase Operates through a Covalent Sialylâ^'Enzyme Intermediate:Â Tyrosine Is the Catalytic Nucleophile. Journal of the American Chemical Society, 2003, 125, 7532-7533.	13.7	188
24	Pharmacological Enhancement of β-Hexosaminidase Activity in Fibroblasts from Adult Tay-Sachs and Sandhoff Patients. Journal of Biological Chemistry, 2004, 279, 13478-13487.	3.4	186
25	Mechanism of Agrobacterium .betaglucosidase: kinetic analysis of the role of noncovalent enzyme/substrate interactions. Biochemistry, 1995, 34, 16194-16202.	2.5	182
26	Sugar Ring Distortion in the Glycosyl-Enzyme Intermediate of a Family G/11 Xylanaseâ€,‡. Biochemistry, 1999, 38, 5346-5354.	2.5	182
27	The Role of Sugar Substituents in Glycoside Hydrolysis. Journal of the American Chemical Society, 2000, 122, 1270-1277.	13.7	175
28	Mechanism-Based Covalent Neuraminidase Inhibitors with Broad-Spectrum Influenza Antiviral Activity. Science, 2013, 340, 71-75.	12.6	175
29	Crystallographic Structure of Human β-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis. Journal of Molecular Biology, 2006, 359, 913-929.	4.2	169
30	Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology, 2008, 18, 570-586.	2.5	167
31	Crystal structure of the catalytic domain of the .beta1,4-glycanase Cex from Cellulomonas fimi. Biochemistry, 1994, 33, 12546-12552.	2.5	166
32	The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies. Journal of the American Chemical Society, 2014, 136, 321-329.	13.7	164
33	The Search for Novel Human Pancreatic αâ€Amylase Inhibitors: Highâ€Throughput Screening of Terrestrial and Marine Natural Product Extracts. ChemBioChem, 2008, 9, 433-438.	2.6	163
34	2-Deoxy-2-fluoroglucosides: a novel class of mechanism-based glucosidase inhibitors. Journal of the American Chemical Society, 1987, 109, 7530-7531.	13.7	161
35	Mechanistic and Structural Analysis of a Family 31 α-Glycosidase and Its Glycosyl-enzyme Intermediate. Journal of Biological Chemistry, 2005, 280, 2105-2115.	3.4	156
36	Crystallographic observation of a covalent catalytic intermediate in a β-glycosidase. Nature Structural Biology, 1996, 3, 149-154.	9.7	153

#	Article	IF	CITATIONS
37	The Acid/Base Catalyst in the Exoglucanase/Xylanase from Cellulomonas fimi Is Glutamic Acid 127: Evidence from Detailed Kinetic Studies of Mutants. Biochemistry, 1994, 33, 6371-6376.	2.5	152
38	Ultrahighâ€Throughput FACSâ€Based Screening for Directed Enzyme Evolution. ChemBioChem, 2009, 10, 2704-2715.	2.6	151
39	Inactivation of a .betaglucosidase through the accumulation of a stable 2-deoxy-2-fluoroalphaD-glucopyranosyl-enzyme intermediate: a detailed investigation. Biochemistry, 1992, 31, 9970-9978.	2.5	150
40	Approaches to labeling and identification of active site residues in glycosidases. Protein Science, 1995, 4, 361-372.	7.6	148
41	Dissection of nucleophilic and acid–base catalysis in glycosidases. Current Opinion in Chemical Biology, 2001, 5, 643-649.	6.1	146
42	Thioglycoligases: Mutant Glycosidases for Thioglycoside Synthesis. Angewandte Chemie - International Edition, 2003, 42, 352-354.	13.8	143
43	Crystal Structure of Thermotoga maritima α-l-Fucosidase. Journal of Biological Chemistry, 2004, 279, 13119-13128.	3.4	141
44	Advances in Enzymatic Glycoside Synthesis. ACS Chemical Biology, 2016, 11, 1784-1794.	3.4	140
45	Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology, 2022, 20, 542-556.	28.6	139
46	ldentification of a covalent .alphaD-glucopyranosyl enzyme intermediate formed on a .betaglucosidase. Journal of the American Chemical Society, 1988, 110, 8551-8553.	13.7	135
47	Emerging methods for the production of homogeneous human glycoproteins. Nature Chemical Biology, 2009, 5, 206-215.	8.0	133
48	Observing cellulose biosynthesis and membrane translocation in crystallo. Nature, 2016, 531, 329-334.	27.8	133
49	Identification of Glutamic Acid 78 as the Active Site Nucleophile in Bacillus subtilis Xylanase Using Electrospray Tandem Mass Spectrometry. Biochemistry, 1994, 33, 7027-7032.	2.5	130
50	Dissecting the Electrostatic Interactions and pH-Dependent Activity of a Family 11 Glycosidaseâ€,â€i. Biochemistry, 2001, 40, 10115-10139.	2.5	128
51	Substrate Distortion by a -Mannanase: Snapshots of the Michaelis and Covalent-Intermediate Complexes Suggest a B2,5 Conformation for the Transition State. Angewandte Chemie - International Edition, 2002, 41, 2824-2827.	13.8	127
52	Mechanisms of Cellulases and Xylanases: A Detailed Kinetic Study of the Exobeta1,4-glycanase from Cellulomonas Fimi. Biochemistry, 1994, 33, 6363-6370.	2.5	126
53	Pre-Steady State Kinetic Analysis of an Enzymatic Reaction Monitored by Time-Resolved Electrospray Ionization Mass Spectrometryâ€. Biochemistry, 1998, 37, 7664-7669.	2.5	126
54	Aspartate 313 in the Streptomyces plicatusHexosaminidase Plays a Critical Role in Substrate-assisted Catalysis by Orienting the 2-Acetamido Group and Stabilizing the Transition State. Journal of Biological Chemistry, 2002, 277, 40055-40065.	3.4	126

#	Article	IF	CITATIONS
55	Unequivocal Identification of Asp-214 as the Catalytic Nucleophile of Saccharomyces cerevisiae α-Glucosidase Using 5-Fluoro Glycosyl Fluorides. Journal of Biological Chemistry, 1996, 271, 6889-6894.	3.4	124
56	An Unusual Mechanism of Glycoside Hydrolysis Involving Redox and Elimination Steps by a Family 4 β-Glycosidase fromThermotoga maritima. Journal of the American Chemical Society, 2004, 126, 8354-8355.	13.7	119
57	Mechanistic Analyses of Catalysis in Human Pancreatic α-Amylase:  Detailed Kinetic and Structural Studies of Mutants of Three Conserved Carboxylic Acids. Biochemistry, 2002, 41, 4492-4502.	2.5	116
58	Directed Evolution of a Glycosynthase from Agrobacterium sp. Increases Its Catalytic Activity Dramatically and Expands Its Substrate Repertoire. Journal of Biological Chemistry, 2004, 279, 42787-42793.	3.4	116
59	Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus nigerβ-Glucosidase. Journal of Biological Chemistry, 2000, 275, 4973-4980.	3.4	115
60	5-Fluoro Glycosides: A New Class of Mechanism-Based Inhibitors of Both α- and β-Glucosidases. Journal of the American Chemical Society, 1996, 118, 241-242.	13.7	113
61	The E358S mutant of Agrobacterium sp. β-glucosidase is a greatly improved glycosynthase. FEBS Letters, 2000, 466, 40-44.	2.8	113
62	The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nature Chemical Biology, 2015, 11, 691-696.	8.0	113
63	Alternative Catalytic Anions Differentially Modulate Human α-Amylase Activity and Specificity [,] . Biochemistry, 2008, 47, 3332-3344.	2.5	111
64	Mechanism of Action and Identification of Asp242 as the Catalytic Nucleophile of Vibrio furnisii N-Acetyl-β-d-glucosaminidase Using 2-Acetamido-2-deoxy-5-fluoro-α-l-idopyranosyl Fluoride. Biochemistry, 2000, 39, 117-126.	2.5	106
65	Structural insight into mammalian sialyltransferases. Nature Structural and Molecular Biology, 2009, 16, 1186-1188.	8.2	105
66	The Donor Subsite of Trehalose-6-phosphate Synthase. Journal of Biological Chemistry, 2004, 279, 1950-1955.	3.4	104
67	Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB â€" Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 169-177.	2.0	104
68	The Structure of Clostridium perfringens Nanl Sialidase and Its Catalytic Intermediates. Journal of Biological Chemistry, 2008, 283, 9080-9088.	3.4	102
69	β-Mannosynthase: Synthesis ofβ-Mannosides with a Mutantβ-Mannosidase. Angewandte Chemie - International Edition, 2001, 40, 417-420.	13.8	101
70	High-Throughput Screening for Human Lysosomal β-N-Acetyl Hexosaminidase Inhibitors Acting as Pharmacological Chaperones. Chemistry and Biology, 2007, 14, 153-164.	6.0	99
71	Detailed Comparative Analysis of the Catalytic Mechanisms of β-N-Acetylglucosaminidases from Families 3 and 20 of Glycoside Hydrolases. Biochemistry, 2005, 44, 12809-12818.	2.5	98
72	Insights into transition state stabilization of the β-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Nature Structural Biology, 1998, 5, 812-818.	9.7	97

#	Article	IF	CITATIONS
73	Mechanistic consequences of mutation of the active site nucleophile Glu 358 in Agrobacterium .betaglucosidase. Biochemistry, 1992, 31, 9979-9985.	2.5	96
74	Mechanistic analogies amongst carbohydrate modifying enzymes. Chemical Communications, 2004, , 2243.	4.1	95
75	Order and Disorder: Differential Structural Impacts of Myricetin and Ethyl Caffeate on Human Amylase, an Antidiabetic Target. Journal of Medicinal Chemistry, 2012, 55, 10177-10186.	6.4	95
76	Mechanism-based Inhibition of Yeast α-Glucosidase and Human Pancreatic α-Amylase by a New Class of Inhibitors. Journal of Biological Chemistry, 1995, 270, 26778-26781.	3.4	94
77	Exploring the Cellulose/Xylan Specificity of the β-1,4-Glycanase Cex from Cellulomonas fimi through Crystallography and Mutation,. Biochemistry, 1998, 37, 4751-4758.	2.5	94
78	Breakdown of oligosaccharides by the process of elimination. Current Opinion in Chemical Biology, 2006, 10, 147-155.	6.1	92
79	The synthesis and hydrolysis of a series of deoxyfluoro-d-glucopyranosyl phosphates. Carbohydrate Research, 1986, 154, 127-144.	2.3	91
80	Insights into the Mechanism of Drosophila melanogaster Golgi α-Mannosidase II through the Structural Analysis of Covalent Reaction Intermediates. Journal of Biological Chemistry, 2003, 278, 48074-48083.	3.4	91
81	Structural Analysis of the α-2,3-Sialyltransferase Cst-I from Campylobacter jejuni in Apo and Substrate-Analogue Bound Forms,. Biochemistry, 2007, 46, 7196-7204.	2.5	90
82	Intermediate Trapping on a Mutant Retaining α-Galactosyltransferase Identifies an Unexpected Aspartate Residue. Journal of Biological Chemistry, 2004, 279, 28339-28344.	3.4	89
83	Mechanistic Consequences of Mutation of Active Site Carboxylates in a Retaining β-1,4-Clycanase fromCellulomonas fimiâ€. Biochemistry, 1996, 35, 13165-13172.	2.5	88
84	Novel Catalytic Mechanism of Glycoside Hydrolysis Based on the Structure of an NAD+/Mn2+-Dependent Phospho-α-Glucosidase from Bacillus subtilis. Structure, 2004, 12, 1619-1629.	3.3	88
85	Directed evolution of new glycosynthases from Agrobacterium β-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chemistry and Biology, 2001, 8, 437-443.	6.0	87
86	Direct 1H N.M.R. determination of the stereochemical course of hydrolyses catalysed by glucanase components of the cellulase complex. Biochemical and Biophysical Research Communications, 1986, 139, 487-494.	2.1	84
87	Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding. Journal of the American Chemical Society, 2003, 125, 7496-7497.	13.7	84
88	Configurationally selective transition state analogue inhibitors of glycosidases. A study with nojiritetrazoles, a new class of glycosidase inhibitors. Carbohydrate Research, 1993, 250, 113-128.	2.3	83
89	Site-Directed Mutation of the Putative Catalytic Residues of Endoglucanase CenA from Cellulomonas fimi. Biochemistry, 1995, 34, 2220-2224.	2.5	83
90	Selfâ€Immobilizing Fluorogenic Imaging Agents of Enzyme Activity. Angewandte Chemie - International Edition, 2011, 50, 300-303.	13.8	81

#	Article	IF	CITATIONS
91	Solid-Phase Oligosaccharide and Glycopeptide Synthesis Using Glycosynthases. Journal of Organic Chemistry, 2002, 67, 4143-4149.	3.2	79
92	Glycosynthase-Mediated Synthesis of Glycosphingolipids. Journal of the American Chemical Society, 2006, 128, 6300-6301.	13.7	79
93	Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2ÂÃ resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochemical Journal, 1998, 335, 409-416.	3.7	77
94	A New Generation of Specific <i>Trypanosoma cruzi trans</i> ‧ialidase Inhibitors. Angewandte Chemie - International Edition, 2008, 47, 2700-2703.	13.8	77
95	Designer enzymes for glycosphingolipid synthesis by directed evolution. Nature Chemical Biology, 2009, 5, 508-514.	8.0	76
96	Trapping and Characterization of the Reaction Intermediate in Cyclodextrin Glycosyltransferase by Use of Activated Substrates and a Mutant Enzymeâ€. Biochemistry, 1997, 36, 9927-9934.	2.5	75
97	Structural and Kinetic Analysis of Two Covalent Sialosyl-Enzyme Intermediates on Trypanosoma rangeli Sialidase. Journal of Biological Chemistry, 2006, 281, 4149-4155.	3.4	75
98	Identification of the Active Site Nucleophile in Jack Bean α-Mannosidase Using 5-Fluoro-β-l-Gulosyl Fluoride. Journal of Biological Chemistry, 1998, 273, 2067-2072.	3.4	74
99	Acarbose Rearrangement Mechanism Implied by the Kinetic and Structural Analysis of Human Pancreatic α-Amylase in Complex with Analogues and Their Elongated Counterpartsâ€,‡. Biochemistry, 2005, 44, 3347-3357.	2.5	74
100	Rapid Assembly of a Library of Lipophilic Iminosugars via the Thiol–Ene Reaction Yields Promising Pharmacological Chaperones for the Treatment of Gaucher Disease. Journal of Medicinal Chemistry, 2012, 55, 2737-2745.	6.4	74
101	Positioning the Acid/Base Catalyst in a Glycosidase: Studies withBacillus circulansXylanaseâ€. Biochemistry, 1997, 36, 2257-2265.	2.5	73
102	Active-site Peptide "Fingerprinting―of Glycosidases in Complex Mixtures by Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 35126-35135.	3.4	73
103	Expanding the Thioglycoligase Strategy to the Synthesis of α-Linked Thioglycosides Allows Structural Investigation of the Parent Enzyme/Substrate Complex. Journal of the American Chemical Society, 2006, 128, 2202-2203.	13.7	72
104	Identification of the Catalytic Nucleophile of the Family 29 α-L-Fucosidase from Thermotoga maritima through Trapping of a Covalent Glycosyl-Enzyme Intermediate and Mutagenesis. Journal of Biological Chemistry, 2003, 278, 47394-47399.	3.4	70
105	Subsite structure of the endo-type chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum: an investigation using steady-state kinetic analysis and MS. Biochemical Journal, 2003, 374, 369-380.	3.7	70
106	N-Acetylglucosaminidases from CAZy Family GH3 Are Really Glycoside Phosphorylases, Thereby Explaining Their Use of Histidine as an Acid/Base Catalyst in Place of Glutamic Acid. Journal of Biological Chemistry, 2015, 290, 4887-4895.	3.4	70
107	Crystal Structure of β-d-Xylosidase from Thermoanaerobacterium saccharolyticum, a Family 39 Glycoside Hydrolase. Journal of Molecular Biology, 2004, 335, 155-165.	4.2	69
108	Detailed Structural Analysis of Glycosidase/Inhibitor Interactions:Â Complexes of Cex fromCellulomonas fimiwith Xylobiose-Derived Aza-Sugarsâ€,‡. Biochemistry, 2000, 39, 11553-11563.	2.5	68

#	Article	IF	CITATIONS
109	Elucidation of the Mechanism of Polysaccharide Cleavage by Chondroitin AC Lyase fromFlavobacteriumheparinum. Journal of the American Chemical Society, 2002, 124, 9756-9767.	13.7	68
110	Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. , 2006, 2, 724-728.		68
111	Anatomy of Glycosynthesis. Chemistry and Biology, 2003, 10, 619-628.	6.0	67
112	Unusual Enzymatic Glycoside Cleavage Mechanisms. Accounts of Chemical Research, 2014, 47, 226-235.	15.6	67
113	Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chemical Communications, 2003, , 1327-1329.	4.1	66
114	The purification and characterization of a \hat{l}^2 -glucosidase from Alcaligenes faecalis. Biochemistry and Cell Biology, 1986, 64, 914-922.	2.0	65
115	Enzymatic Synthesis of Carbonâ^'Fluorine Bonds. Journal of the American Chemical Society, 2001, 123, 4350-4351.	13.7	64
116	Engineering of a thioglycoligase: randomized mutagenesis of the acid-base residue leads to the identification of improved catalysts. Protein Engineering, Design and Selection, 2005, 18, 33-40.	2.1	62
117	Structure of human ST8SiallI sialyltransferase provides insight into cell-surface polysialylation. Nature Structural and Molecular Biology, 2015, 22, 627-635.	8.2	62
118	The synthesis and hydrolysis of a series of deoxy- and deoxyfluoro-α-d- "glucopyranosyl―phosphates. Carbohydrate Research, 1989, 187, 43-66.	2.3	61
119	Effects of both Shortening and Lengthening the Active Site Nucleophile ofBacillus circulansXylanase on Catalytic Activityâ€. Biochemistry, 1996, 35, 10110-10118.	2.5	61
120	Nanomolar versus Millimolar Inhibition by Xylobiose-Derived Azasugars:  Significant Differences between Two Structurally Distinct Xylanases. Journal of the American Chemical Society, 2000, 122, 2223-2235.	13.7	61
121	Mechanistic Studies of a Retaining α-Galactosyltransferase fromNeisseria meningitidisâ€. Biochemistry, 2002, 41, 5075-5085.	2.5	60
122	Characterization of a beta-N-acetylhexosaminidase and a beta-N-acetylglucosaminidase/beta-glucosidase from Cellulomonas fimi. FEBS Journal, 2006, 273, 2929-2941.	4.7	60
123	Assignment of Sweet Almond β-Glucosidase as a Family 1 Glycosidase and Identification of Its Active Site Nucleophile. Journal of Biological Chemistry, 1997, 272, 24864-24867.	3.4	59
124	Detailed Dissection of a New Mechanism for Glycoside Cleavage: α-1,4-Glucan Lyaseâ€. Biochemistry, 2003, 42, 13081-13090.	2.5	59
125	Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry, 1991, 30, 1419-1424.	2.5	58
126	Identification of Asp-130 as the Catalytic Nucleophile in the Main α-Galactosidase from Phanerochaete chrysosporium, a Family 27 Glycosyl Hydrolase. Biochemistry, 2000, 39, 9826-9836.	2.5	58

#	Article	IF	CITATIONS
127	Glycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from Cellulomonas fimi. Organic and Biomolecular Chemistry, 2006, 4, 2025.	2.8	58
128	Fluorescence Activated Cell Sorting as a General Ultra-High-Throughput Screening Method for Directed Evolution of Glycosyltransferases. Journal of the American Chemical Society, 2010, 132, 10570-10577.	13.7	58
129	Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Science Advances, 2019, 5, eaaw8451.	10.3	58
130	The Crystal Structure of a 2-Fluorocellotriosyl Complex of theStreptomyceslividansEndoglucanase CelB2 at 1.2 à Resolutionâ€,‡. Biochemistry, 1999, 38, 4826-4833.	2.5	56
131	Thioglycosynthases: double mutant glycosidases that serve as scaffolds for thioglycoside synthesis. Chemical Communications, 2004, , 274-275.	4.1	56
132	An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nature Microbiology, 2019, 4, 1475-1485.	13.3	56
133	Mechanism, Mutagenesis, and Chemical Rescue of a β-Mannosidase fromCellulomonas fimiâ€. Biochemistry, 2003, 42, 7195-7204.	2.5	55
134	Kinetic and Mechanistic Analysis of Trypanosoma cruzi Trans-Sialidase Reveals a Classical Ping-Pong Mechanism with Acid/Base Catalysis. Biochemistry, 2008, 47, 3507-3512.	2.5	55
135	A New, Simple, High-Affinity Glycosidase Inhibitor:  Analysis of Binding through X-ray Crystallography, Mutagenesis, and Kinetic Analysis. Journal of the American Chemical Society, 2000, 122, 4229-4230.	13.7	54
136	Trapping Covalent Intermediates on \hat{l}^2 -Glycosidases. Methods in Enzymology, 2002, 354, 84-105.	1.0	54
137	Syntheses of 2-deoxy-2-fluoro mono- and oligo-saccharide glycosides from glycals and evaluation as glycosidase inhibitors. Carbohydrate Research, 1993, 249, 77-90.	2.3	53
138	Identification of Clu-330 as the Catalytic Nucleophile of Candida albicans Exo-β-(1,3)-glucanase. Journal of Biological Chemistry, 1997, 272, 3161-3167.	3.4	53
139	Cloning, mutagenesis, and structural analysis of human pancreatic αâ€amylase expressed in pichia pastoris. Protein Science, 1999, 8, 635-643.	7.6	53
140	Toward Efficient Enzymes for the Generation of Universal Blood through Structure-Guided Directed Evolution. Journal of the American Chemical Society, 2015, 137, 5695-5705.	13.7	53
141	A general and efficient strategy for generating the stable enzymes. Scientific Reports, 2016, 6, 33797.	3.3	53
142	NAD+ and Metal-ion Dependent Hydrolysis by Family 4 Glycosidases: Structural Insight into Specificity for Phospho-β-d-glucosides. Journal of Molecular Biology, 2005, 346, 423-435.	4.2	52
143	New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydrate Research, 2010, 345, 1272-1279.	2.3	52
144	D-Gluconhydroximo-1,5-lactam and RelatedN-Arylcarbamates Theoretical Calculations, Structure, Synthesis, and Inhibitory Effect on ?-Glucosidases. Helvetica Chimica Acta, 1993, 76, 2666-2686.	1.6	51

#	Article	IF	CITATIONS
145	Structural and mechanistic studies of chloride induced activation of human pancreatic Â-amylase. Protein Science, 2005, 14, 743-755.	7.6	51
146	Development of New and Selective <i>Trypanosoma cruzi</i> transâ€Sialidase Inhibitors from Sulfonamide Chalcones and Their Derivatives. ChemBioChem, 2009, 10, 2475-2479.	2.6	51
147	Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nature Communications, 2014, 5, 4683.	12.8	51
148	Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. Biochemical Journal, 1996, 315, 467-472.	3.7	50
149	Enzymatic synthesis of disaccharides using Agrobacterium sp. β-glucosidase. Carbohydrate Research, 1997, 305, 371-381.	2.3	50
150	The synthesis, testing and use of 5-fluoro-α-d-galactosyl fluoride to trap an intermediate on green coffee bean α-galactosidase and identify the catalytic nucleophile. Carbohydrate Research, 2000, 329, 539-547.	2.3	50
151	A Case for Reverse Protonation:Â Identification of Clu160 as an Acid/Base Catalyst inThermoanaerobacterium saccharolyticumβ-Xylosidase and Detailed Kinetic Analysis of a Site-Directed Mutantâ€. Biochemistry, 2002, 41, 9736-9746.	2.5	50
152	Direct Demonstration of the Flexibility of the Glycosylated Proline-Threonine Linker in the Cellulomonas fimi Xylanase Cex through NMR Spectroscopic Analysis. Journal of Biological Chemistry, 2007, 282, 2091-2100.	3.4	50
153	The cellulose-binding domains from Cellulomonas fimi β-1,4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations. Journal of Molecular Biology, 1999, 287, 609-625.	4.2	49
154	Nature's many mechanisms for the degradation of oligosaccharides. Organic and Biomolecular Chemistry, 2004, 2, 2707.	2.8	49
155	Structure and mechanism of <i>Staphylococcus aureus</i> TarM, the wall teichoic acid α-glycosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E576-85.	7.1	49
156	Design and Synthesis of 2'-Deoxy-2'-Fluorodisaccharides as Mechanism-Based Glycosidase Inhibitors That Exploit Aglycon Specificity. Journal of the American Chemical Society, 1997, 119, 5792-5797.	13.7	48
157	Insights into mucopolysaccharidosis I from the structure and action of α-L-iduronidase. Nature Chemical Biology, 2013, 9, 739-745.	8.0	48
158	Syntheses and testing of substrates and mechanism-based inactivators for xylanases. Carbohydrate Research, 1995, 274, 137-153.	2.3	47
159	Substrate-induced inactivation of a crippled .betaglucosidase mutant: identification of the labeled amino acid and mutagenic analysis of its role. Biochemistry, 1995, 34, 14547-14553.	2.5	47
160	Probing the Role of the Chloride Ion in the Mechanism of Human Pancreatic α-Amylaseâ€,‡. Biochemistry, 2002, 41, 215-225.	2.5	47
161	Mechanism ofThermoanaerobacterium saccharolyticumβ-Xylosidase: Kinetic Studiesâ€. Biochemistry, 2002, 41, 9727-9735.	2.5	47
162	The synthesis of some mechanistic probes for sialic acid processing enzymes and the labeling of a sialidase from Trypanosoma rangeli. Canadian Journal of Chemistry, 2004, 82, 1581-1588.	1.1	47

#	Article	IF	CITATIONS
163	Synthesis and Testing of Mechanism-Based Protein-Profiling Probes for Retaining Endo-glycosidases. ChemBioChem, 2006, 7, 116-124.	2.6	47
164	Rapid Discovery of Potent and Selective Glycosidase-Inhibiting De Novo Peptides. Cell Chemical Biology, 2017, 24, 381-390.	5.2	46
165	Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance. PLoS Pathogens, 2016, 12, e1006067.	4.7	46
166	A FRET Probe for Cellâ€Based Imaging of Gangliosideâ€Processing Enzyme Activity and Highâ€Throughput Screening. Angewandte Chemie - International Edition, 2015, 54, 5389-5393.	13.8	44
167	Thermostable Clycosynthases and Thioglycoligases Derived from Thermotoga maritima βâ€Glucuronidase. ChemBioChem, 2006, 7, 1028-1030.	2.6	43
168	Structural and Mechanistic Analyses of endo-Glycoceramidase II, a Membrane-associated Family 5 Glycosidase in the Apo and GM3 Ganglioside-bound Forms. Journal of Biological Chemistry, 2007, 282, 14300-14308.	3.4	43
169	Fluorous Iminoalditols: A New Family of Glycosidase Inhibitors and Pharmacological Chaperones. ChemBioChem, 2010, 11, 2026-2033.	2.6	43
170	Glycoside Cleavage by a New Mechanism in Unsaturated Glucuronyl Hydrolases. Journal of the American Chemical Society, 2011, 133, 19334-19337.	13.7	43
171	Identifying the Catalytic Acid/Base in GH29 α- <scp>l</scp> -Fucosidase Subfamilies. Biochemistry, 2013, 52, 5857-5864.	2.5	43
172	Identification of Glu-268 as the Catalytic Nucleophile of Human Lysosomal β-Galactosidase Precursor by Mass Spectrometry. Journal of Biological Chemistry, 1997, 272, 396-400.	3.4	42
173	Differential mechanism-based labeling and unequivocal activity assignment of the two active sites of intestinal lactase/phlorizin hydrolase. FEBS Journal, 2000, 267, 6996-7005.	0.2	42
174	Biochemical and Structural Assessment of the 1-N-Azasugar GalNAc-isofagomine as a Potent Family 20 β-N-Acetylhexosaminidase Inhibitor. Journal of Biological Chemistry, 2001, 276, 42131-42137.	3.4	42
175	Transition-State Mimicry by Glycosidase Inhibitors:Â A Critical Kinetic Analysis. Journal of the American Chemical Society, 2007, 129, 4530-4531.	13.7	42
176	A Chemoenzymatic Total Synthesis of the Neurogenic Starfish Ganglioside LLGâ€3 Using an Engineered and Evolved Synthase. Angewandte Chemie - International Edition, 2012, 51, 8640-8643.	13.8	42
177	Endo-fucoidan hydrolases from glycoside hydrolase family 107 (CH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. Journal of Biological Chemistry, 2018, 293, 18296-18308.	3.4	42
178	Identification of the Catalytic Nucleophile of Endoglucanase I fromFusarium oxysporumby Mass Spectrometryâ€. Biochemistry, 1997, 36, 5893-5901.	2.5	41
179	Identification of Glu-277 as the catalytic nucleophile of Thermoanaerobacterium saccharolyticum β-xylosidase using electrospray MS. Biochemical Journal, 1998, 335, 449-455.	3.7	41
180	The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Carbohydrate Research, 2004, 339, 699-703.	2.3	41

#	ARTICLE	IF	CITATIONS
181	Mechanistic Analysis of the Unusual Redox-Elimination Sequence Employed byThermotoga maritimaBglT: A 6-Phospho-β-glucosidase from Glycoside Hydrolase Family 4â€. Biochemistry, 2006, 45, 571-580.	2.5	41
182	The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013, 23, 1075-1083.	2.5	41
183	Discovery of UDP-Glycosyltransferases and BAHD-Acyltransferases Involved in the Biosynthesis of the Antidiabetic Plant Metabolite Montbretin A. Plant Cell, 2018, 30, 1864-1886.	6.6	41
184	Glycosyl Fluorides Can Function as Substrates for Nucleotide Phosphosugar-dependent Glycosyltransferases. Journal of Biological Chemistry, 1999, 274, 37717-37722.	3.4	40
185	Glycosynthases: New Tools for Oligosaccharide Synthesis Trends in Glycoscience and Glycotechnology, 2002, 14, 13-25.	0.1	40
186	Imaging of enzyme replacement therapy using PET. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10842-10847.	7.1	40
187	Circular Permutation of <i>Bacillus circulans</i> Xylanase: A Kinetic and Structural Study. Biochemistry, 2010, 49, 2464-2474.	2.5	40
188	Rapid screening of the aglycone specificity of glycosidases: applications to enzymatic synthesis of oligosaccharides. Chemistry and Biology, 2001, 8, 627-633.	6.0	39
189	Probing Electrostatic Interactions along the Reaction Pathway of a Glycoside Hydrolase:  Histidine Characterization by NMR Spectroscopy. Biochemistry, 2007, 46, 7383-7395.	2.5	39
190	The Structural Basis of Glycosidase Inhibition by Five-Membered Iminocyclitols: The Clanâ€A Glycoside Hydrolase Endoglycoceramidase as a Model System. Angewandte Chemie - International Edition, 2007, 46, 4474-4476.	13.8	39
191	Synthesis of Clycans and Glycopolymers Through Engineered Enzymes. Biopolymers, 2013, 99, 666-674.	2.4	39
192	Structural basis of Notch O-glucosylation and O–xylosylation by mammalian protein–O-glucosyltransferase 1 (POGLUT1). Nature Communications, 2017, 8, 185.	12.8	39
193	Identification of Glu-540 as the Catalytic Nucleophile of Human β-Glucuronidase Using Electrospray Mass Spectrometry. Journal of Biological Chemistry, 1998, 273, 34057-34062.	3.4	38
194	Glycosylation of a Neoglycoprotein by Using Glycosynthase and Thioglycoligase Approaches: The Generation of a Thioglycoprotein. Angewandte Chemie - International Edition, 2006, 45, 2585-2588.	13.8	38
195	Enzymatic synthesis of cello-oligosaccharides by rice BGlu1 β-glucosidase glycosynthase mutants. Glycobiology, 2007, 17, 744-753.	2.5	38
196	The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar. Plant Physiology, 2015, 168, 94-106.	4.8	38
197	Substrate-assisted catalysis in glycosidases. Journal of the American Chemical Society, 1995, 117, 10137-10138.	13.7	37
198	d-Glyconhydroximolactams strongly inhibit α-glycosidases. Carbohydrate Research, 1997, 298, 291-298.	2.3	37

#	Article	IF	CITATIONS
199	Structural, Thermodynamic, and Kinetic Analyses of Tetrahydrooxazine-derived Inhibitors Bound to β-Glucosidases. Journal of Biological Chemistry, 2004, 279, 49236-49242.	3.4	37
200	Probing the aglycon binding site of a β-glucosidase: a collection of C-1-modified 2,5-dideoxy-2,5-imino-d-mannitol derivatives and their structure–activity relationships as competitive inhibitors. Bioorganic and Medicinal Chemistry, 2004, 12, 3485-3495.	3.0	37
201	Structural Analysis of Golgi α-Mannosidase II Inhibitors Identified from a Focused Glycosidase Inhibitor Screen. Biochemistry, 2008, 47, 10058-10068.	2.5	37
202	The Structural Basis for T-antigen Hydrolysis by Streptococcus pneumoniae. Journal of Biological Chemistry, 2008, 283, 31279-31283.	3.4	37
203	Human Lysosomal and Jack Bean α-Mannosidases Are Retaining Glycosidases. Biochemical and Biophysical Research Communications, 1997, 238, 896-898.	2.1	36
204	BromoketoneC-Glycosides, a New Class of β-Glucanase Inactivatorsâ€. Journal of the American Chemical Society, 1998, 120, 10326-10331.	13.7	36
205	Characterization of the Glu and Asp Residues in the Active Site of Human β-Hexosaminidase B. Biochemistry, 2001, 40, 2201-2209.	2.5	36
206	New Approaches to Enzymatic Oligosaccharide Synthesis: Glycosynthases and Thioglycoligases. Biocatalysis and Biotransformation, 2003, 21, 159-166.	2.0	36
207	A βâ€1,4â€Galactosyltransferase from <i>Helicobacter pylori</i> is an Efficient and Versatile Biocatalyst Displaying a Novel Activity for Thioglycoside Synthesis. ChemBioChem, 2008, 9, 1632-1640.	2.6	36
208	Structure and Mechanism of the Lipooligosaccharide Sialyltransferase from Neisseria meningitidis. Journal of Biological Chemistry, 2011, 286, 37237-37248.	3.4	36
209	Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 1633-1654.	4.3	36
210	Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the <i>Castor canadensis</i> fecal microbiome. ISME Journal, 2018, 12, 2757-2769.	9.8	36
211	Toward universal donor blood: Enzymatic conversion of A and B to O type. Journal of Biological Chemistry, 2020, 295, 325-334.	3.4	36
212	Elucidating the Nature of the <i>Streptomyces plicatus</i> β-Hexosaminidase-Bound Intermediate Using ab initio Molecular Dynamics Simulations. Journal of the American Chemical Society, 2008, 130, 17620-17628.	13.7	35
213	Glycosphingolipid synthesis employing a combination of recombinant glycosyltransferases and an endoglycoceramidase glycosynthase. Chemical Communications, 2011, 47, 10806.	4.1	35
214	Biomining active cellulases from a mining bioremediation system. Journal of Biotechnology, 2013, 167, 462-471.	3.8	35
215	A Bacterial Expression Platform for Production of Therapeutic Proteins Containing Human-like O-Linked Glycans. Cell Chemical Biology, 2019, 26, 203-212.e5.	5.2	35
216	Facile Formation of βâ€ŧhioGlcNAc Linkages to Thiol ontaining Sugars, Peptides, and Proteins using a Mutant GH20 Hexosaminidase. Angewandte Chemie - International Edition, 2019, 58, 1632-1637.	13.8	35

#	Article	IF	CITATIONS
217	Thioglycoligaseâ€Based Assembly of Thiodisaccharides: Screening as βâ€Galactosidase Inhibitors. ChemBioChem, 2007, 8, 1495-1499.	2.6	34
218	A New Sialidase Mechanism. Journal of Biological Chemistry, 2009, 284, 17404-17410.	3.4	34
219	Identification of Glu-120 as the catalytic nucleophile in Streptomyces lividans endoglucanase CelB. Biochemical Journal, 1998, 336, 139-145.	3.7	33
220	Identification of the two essential groups in the family 3 β-glucosidase from Flavobacterium meningosepticum by labelling and tandem mass spectrometric analysis. Biochemical Journal, 2002, 365, 857-863.	3.7	33
221	Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. Journal of the American Chemical Society, 2010, 132, 9430-9437.	13.7	33
222	Mechanistic Analysis of Trehalose Synthase from Mycobacterium smegmatis. Journal of Biological Chemistry, 2011, 286, 35601-35609.	3.4	33
223	Identification of Asp 549 as the Catalytic Nucleophile of Glycogen-Debranching Enzyme via Trapping of the Glycosylâ''Enzyme Intermediateâ€. Biochemistry, 1996, 35, 5458-5463.	2.5	32
224	Escherichia coli Glucuronylsynthase:  An Engineered Enzyme for the Synthesis of β-Glucuronides. Organic Letters, 2008, 10, 1585-1588.	4.6	32
225	Potent Human α-Amylase Inhibition by the β-Defensin-like Protein Helianthamide. ACS Central Science, 2016, 2, 154-161.	11.3	32
226	Stereochemistry and kinetics of the hydration of 2-acetamido-D-glucal by .betaN-acetylhexosaminidases. Biochemistry, 1994, 33, 14743-14749.	2.5	31
227	α-1,4-Glucan Lyase Performs a Trans-Elimination via a Nucleophilic Displacement Followed by a Syn-Elimination. Journal of the American Chemical Society, 2002, 124, 4948-4949.	13.7	31
228	Labeling and Identification of the Postulated Acid/Base Catalyst in the α-Glucosidase from Saccharomyces cerevisiae Using a Novel Bromoketone C-Glycoside. Biochemistry, 1998, 37, 3858-3864.	2.5	30
229	Identification of the catalytic nucleophile of the Family 31 α-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl–enzyme intermediate. Biochemical Journal, 2001, 359, 381-386.	3.7	30
230	Powerful probes for glycosidases. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1339-1342.	2.2	30
231	Directed " <i>in Situ</i> ―Inhibitor Elongation as a Strategy To Structurally Characterize the Covalent Glycosyl-Enzyme Intermediate of Human Pancreatic α-Amylase [,] . Biochemistry, 2009, 48, 10752-10764.	2.5	30
232	Synthesis, Kinetic Evaluation and Cellâ€Based Analysis of Câ€Alkylated Isofagomines as Chaperones of βâ€Glucocerebrosidase. ChemBioChem, 2011, 12, 2151-2154.	2.6	30
233	Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80. Glycobiology, 2016, 26, 353-359.	2.5	30
234	The Molecular Basis of Polysaccharide Sulfatase Activity and a Nomenclature for Catalytic Subsites in this Class of Enzyme. Structure, 2018, 26, 747-758.e4.	3.3	30

#	Article	IF	CITATIONS
235	Ex vivo enzymatic treatment converts blood type A donor lungs into universal blood type lungs. Science Translational Medicine, 2022, 14, eabm7190.	12.4	30
236	Alternative donor substrates for inverting and retaining glycosyltransferases. Chemical Communications, 2007, , 365-367.	4.1	29
237	N-Bromoacetyl-glycopyranosylamines as affinity labels for a β-glucosidase and a cellulase. Carbohydrate Research, 1993, 250, 195-202.	2.3	28
238	Identification of the catalytic nucleophile of the Family 31 α-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl‒enzyme intermediate. Biochemical Journal, 2001, 359, 381.	3.7	28
239	Family 39 α-l-Iduronidases and β-d-Xylosidases React through Similar Glycosylâ~'Enzyme Intermediates: Identification of the Human Iduronidase Nucleophile. Biochemistry, 2003, 42, 8054-8065.	2.5	28
240	Chitinase Inhibition by Chitobiose and Chitotriose Thiazolines. Angewandte Chemie - International Edition, 2010, 49, 2599-2602.	13.8	28
241	A Mass Spectrometry-Based Approach for Probing Enzyme Active Sites: Identification of Glu 127 inCellulomonas fimiExoglycanase as the Residue Modified byN-Bromoacetyl Cellobiosylamine. Analytical Biochemistry, 1996, 234, 119-125.	2.4	27
242	Identification of Asp197 as the catalytic nucleophile in the family 38 α-mannosidase from bovine kidney lysosomes. FEBS Letters, 2000, 484, 175-178.	2.8	27
243	Structural and Kinetic Analysis of Substrate Binding to the Sialyltransferase Cst-II from Campylobacter jejuni*. Journal of Biological Chemistry, 2011, 286, 35922-35932.	3.4	27
244	Directed evolution of a Â-glycosidase from Agrobacterium sp. to enhance its glycosynthase activity toward C3-modified donor sugars. Protein Engineering, Design and Selection, 2012, 25, 465-472.	2.1	27
245	Substrate Engineering Enabling Fluorescence Droplet Entrapment for IVC-FACS-Based Ultrahigh-Throughput Screening. Analytical Chemistry, 2016, 88, 8587-8595.	6.5	27
246	A novel mechanism of glycoside anomerization. Journal of the American Chemical Society, 1988, 110, 4864-4866.	13.7	26
247	Crystallization and preliminary X-ray diffraction analysis of the catalytic domain of Cex, an exo-β-1,4-glucanase and β-1,4-xylanase from the bacterium Cellulomonas fimi. Journal of Molecular Biology, 1992, 228, 693-695.	4.2	26
248	A short synthesis of β-xylobiosides. Carbohydrate Research, 1994, 265, 9-17.	2.3	26
249	Synthesis with Glycosynthases: Cello-Oligomers of Isofagomine and a Tetrahydrooxazine as Cellulase Inhibitors. Australian Journal of Chemistry, 2002, 55, 747.	0.9	26
250	Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Biochemical Journal, 2004, 378, 141-149.	3.7	26
251	A homology model for human α-l-iduronidase: Insights into human disease. Molecular Genetics and Metabolism, 2005, 85, 28-37.	1.1	26
252	Synthesis and Testing of 2-Deoxy-2,2-Dihaloglycosides as Mechanism-Based Inhibitors of α-Glycosidases. Journal of Organic Chemistry, 2008, 73, 3070-3077.	3.2	26

#	Article	IF	CITATIONS
253	Recent Developments in Glycoside Synthesis with Glycosynthases and Thioglycoligases. Australian Journal of Chemistry, 2009, 62, 510.	0.9	26
254	Tailoring the Specificity and Reactivity of a Mechanismâ€Based Inactivator of Glucocerebrosidase for Potential Therapeutic Applications. Angewandte Chemie - International Edition, 2011, 50, 10381-10383.	13.8	26
255	l-Idoseptanosides: substrates of d-glucosidases?. Tetrahedron: Asymmetry, 2006, 17, 234-239.	1.8	25
256	Family 4 Glycosidases Carry Out Efficient Hydrolysis of Thioglycosides by an α,β-Elimination Mechanism. Angewandte Chemie - International Edition, 2006, 45, 6179-6182.	13.8	25
257	Fluorinated Mechanism-Based Inhibitors: Common Themes and Recent Developments. Current Topics in Medicinal Chemistry, 2014, 14, 865-874.	2.1	25
258	Fluorinated Carbohydrates as Probes of Enzyme Specificity and Mechanism. ACS Symposium Series, 1988, , 59-77.	0.5	24
259	Binding energy and catalysis: deoxyfluoro sugars as probes of hydrogen bonding in phosphoglucomutase. Biochemistry, 1992, 31, 498-505.	2.5	24
260	Identification of Glu-519 as the catalytic nucleophile in β-mannosidase 2A from Cellulomonas fimi. Biochemical Journal, 2000, 351, 833-838.	3.7	24
261	On expanding the repertoire of glycosynthases: Mutant β-galactosidases forming β-(1,6)-linkages. Canadian Journal of Chemistry, 2002, 80, 866-870.	1.1	24
262	Cloning and characterization of Thermotoga maritima β-glucuronidase. Carbohydrate Research, 2006, 341, 49-59.	2.3	24
263	Syntheses of the 3- and 4-thio analogues of 4-nitrophenyl 2-acetamido-2-deoxy-Î ² -d-gluco- and galactopyranoside. Carbohydrate Research, 2007, 342, 2212-2222.	2.3	24
264	Analysis of the dynamic properties of <i>Bacillus circulans</i> xylanase upon formation of a covalent glycosylâ€enzyme intermediate. Protein Science, 2000, 9, 512-524.	7.6	24
265	2-Acetamino-1,2-dideoxynojirimycin—lysine hybrids as hexosaminidase inhibitors. Tetrahedron: Asymmetry, 2009, 20, 832-835.	1.8	24
266	Structural, Mechanistic, and Computational Analysis of the Effects of Anomeric Fluorines on Anomeric Fluoride Departure in 5-Fluoroxylosyl Fluorides. Journal of the American Chemical Society, 2011, 133, 15826-15829.	13.7	24
267	Tuning Mechanismâ€Based Inactivators of Neuraminidases: Mechanistic and Structural Insights. Angewandte Chemie - International Edition, 2014, 53, 3382-3386.	13.8	24
268	Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase. Biochemistry, 2016, 55, 6000-6009.	2.5	24
269	Synthesis and Evaluation as Irreversible Glycosidase Inhibitors of Mono- and Oligo(glycosylthio)benzoquinones. Helvetica Chimica Acta, 1994, 77, 778-799.	1.6	23
270	Thioglycoligases: Mutant Glycosidases for Thioglycoside Synthesis. Angewandte Chemie, 2003, 115, 366-368.	2.0	23

#	Article	IF	CITATIONS
271	Synthesis and characterisation of novel chromogenic substrates for human pancreatic α-amylase. Carbohydrate Research, 2004, 339, 1727-1737.	2.3	23
272	Enzymatic transglycosylation of xylose using a glycosynthase. Carbohydrate Research, 2005, 340, 2735-2741.	2.3	23
273	NMR Spectroscopic Characterization of the Sialyltransferase Cstll from Campylobacter jejuni: Histidine 188 Is the General Base. Biochemistry, 2009, 48, 11220-11230.	2.5	23
274	Mechanistic Insights into the 1,3-Xylanases: Useful Enzymes for Manipulation of Algal Biomass. Journal of the American Chemical Society, 2012, 134, 3895-3902.	13.7	23
275	Alpha-glucosidase and alpha-amylase inhibiting thiodiketopiperazines from the endophytic fungus Setosphaeria rostrata isolated from the medicinal plant Costus speciosus in Sri Lanka. Phytochemistry Letters, 2017, 22, 76-80.	1.2	23
276	Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Cell Chemical Biology, 2019, 26, 1001-1012.e5.	5.2	23
277	Biologically Active 1-Aminodeoxy and 1-O-Alkyl Derivatives of The Powerful D-Glucosidase Inhibitor 2,5-Dideoxy-2,5-Imino-D-Mannitol. Journal of Carbohydrate Chemistry, 2000, 19, 975-990.	1.1	22
278	The identification of the catalytic nucleophiles of two β-galactosidases from glycoside hydrolase family 35. Carbohydrate Research, 2001, 333, 7-17.	2.3	22
279	In Situ Extension as an Approach for Identifying Novel α-Amylase Inhibitors. Journal of Biological Chemistry, 2004, 279, 48282-48291.	3.4	22
280	Synthesis and Kinetic Analysis of theN-Acetylhexosaminidase Inhibitor XylNAc-Isofagomine. Journal of Organic Chemistry, 2005, 70, 7715-7720.	3.2	22
281	A Mechanismâ€Based Approach to Screening Metagenomic Libraries for Discovery of Unconventional Glycosidases. Angewandte Chemie - International Edition, 2018, 57, 11359-11364.	13.8	22
282	Prospecting for microbial α-N-acetylgalactosaminidases yields a new class of GH31 O-glycanase. Journal of Biological Chemistry, 2019, 294, 16400-16415.	3.4	22
283	Facile Synthesis of 2,4-Dinitrophenyl α-D-Glycopyranosides as Chromogenic Substrates for α-Glycosidases. ChemBioChem, 2007, 8, 719-722.	2.6	21
284	A Mechanism-Based ICAT Strategy for Comparing Relative Expression and Activity Levels of Glycosidases in Biological Systems. Journal of Proteome Research, 2008, 7, 3282-3292.	3.7	21
285	Synthesis of C-5a-substituted derivatives of 4-epi-isofagomine: notable β-galactosidase inhibitors and activity promotors of GM1-gangliosidosis related human lysosomal β-galactosidase mutant R201C. Carbohydrate Research, 2016, 429, 71-80.	2.3	21
286	High-Throughput "FP-Tag―Assay for the Identification of Glycosyltransferase Inhibitors. Journal of the American Chemical Society, 2019, 141, 2201-2204.	13.7	21
287	Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nature Communications, 2020, 11, 4864.	12.8	21
288	Catalytic properties of a mutant β-galactosidase fromXanthomonas manihotisengineered to synthesize galactosyl-thio-β-1,3 and -β-1,4-glycosides. FEBS Letters, 2006, 580, 4377-4381.	2.8	20

#	Article	IF	CITATIONS
289	Fluorescent glycosidase inhibiting 1,5-dideoxy-1,5-iminoalditols. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2067-2070.	2.2	20
290	Gas phase noncovalent protein complexes that retain solution binding properties: Binding of xylobiose inhibitors to the β-1, 4 exoglucanase from Cellulomonas fimi. Journal of the American Society for Mass Spectrometry, 2007, 18, 64-73.	2.8	20
291	Iminoalditol-amino acid hybrids: synthesis and evaluation as glycosidase inhibitors. Carbohydrate Research, 2007, 342, 1850-1858.	2.3	20
292	Mechanistic Investigation of the Endo-α- <i>N</i> -acetylgalactosaminidase from <i>Streptococcus pneumoniae</i> R6. Biochemistry, 2009, 48, 10334-10341.	2.5	20
293	Structure of the Michaelis complex of β-mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis. Chemical Communications, 2009, , 2484.	4.1	20
294	O-Glycoligases, a new category of glycoside bond-forming mutant glycosidases, catalyse facile syntheses of isoprimeverosides. Chemical Communications, 2010, 46, 8725.	4.1	20
295	Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity. Carbohydrate Research, 2016, 421, 33-39.	2.3	20
296	Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angewandte Chemie - International Edition, 2017, 56, 6112-6116.	13.8	20
297	Salicortin: a repeat-attack new-mechanism-based Agrobacterium faecalis β-glucosidase inhibitor. Biochemical Journal, 1998, 332, 367-371.	3.7	19
298	N-Alkylated Derivatives of 1,5-Dideoxy-1,5-iminoxylitol as Î'-Xylosidaseand Î'-Glucosidase Inhibitors. Monatshefte Für Chemie, 2002, 133, 555-560.	1.8	19
299	Recruitment of Both Uniform and Differential Binding Energy in Enzymatic Catalysis:Â Xylanases from Families 10 and 11â€. Biochemistry, 2007, 46, 6996-7005.	2.5	19
300	N-Acetylhexosaminidase inhibitory properties of C-1 homologated GlcNAc- and GalNAc-thiazolines. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2944-2947.	2.2	19
301	Enzymatic Thioxyloside Synthesis: Characterization of Thioglycoligase Variants Identified from A Siteâ€Saturation Mutagenesis Library of <i>Bacillus Circulans</i> Xylanase. ChemBioChem, 2010, 11, 533-538.	2.6	19
302	Stereoselective Total Synthesis of Aminoiminohexitols via Carbamate Annulation. Journal of Organic Chemistry, 2011, 76, 9611-9621.	3.2	19
303	Glucosyl epiâ€cyclophellitol allows mechanismâ€based inactivation and structural analysis of human pancreatic αâ€amylase. FEBS Letters, 2016, 590, 1143-1151.	2.8	19
304	Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis. Journal of the American Chemical Society, 2017, 139, 10629-10632.	13.7	19
305	Synthesis of azido-deoxy and amino-deoxy glycosides and glycosyl fluorides for screening of glycosidase libraries and assembly of substituted glycosides. Carbohydrate Research, 2018, 467, 33-44.	2.3	19
306	Identification of the Active-Site Nucleophile in 6-phospho-beta-galactosidase from Staphylococcus aureus by Labelling with Synthetic Inhibitors. FEBS Journal, 1995, 232, 658-663.	0.2	19

#	Article	IF	CITATIONS
307	Multiple phosphate positions in the catalytic site of glycogen phosphorylase: Structure of the pyridoxalâ€5′â€pyrophosphate coenzymeâ€substrate analog. Protein Science, 1992, 1, 1100-1111.	7.6	18
308	Glycosyl Transferase Mechanisms. , 1999, , 279-314.		18
309	Trapping of α-Glycosidase Intermediates. Methods in Enzymology, 2002, 354, 64-84.	1.0	18
310	Concise synthesis of C-1-cyano-iminosugars via a new Staudinger/aza Wittig/Strecker multicomponent reaction strategy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2777-2780.	2.2	18
311	Structural and mechanistic analysis of a \hat{l}^2 -glycoside phosphorylase identified by screening a metagenomic library. Journal of Biological Chemistry, 2018, 293, 3451-3467.	3.4	18
312	Insights into Heptosyltransferase I Catalysis and Inhibition through the Structure of Its Ternary Complex. Structure, 2018, 26, 1399-1407.e5.	3.3	18
313	The base-catalysed anomerization of dinitrophenyl glycosides: evidence for a novel reaction mechanism. Canadian Journal of Chemistry, 1990, 68, 1859-1866.	1.1	17
314	Role of βArg211 in the Active Site of Human β-Hexosaminidase B. Biochemistry, 2000, 39, 6219-6227.	2.5	17
315	Systematic Screening of Synthetic Gene-Encoded Enzymes for Synthesis of Modified Glycosides. ACS Catalysis, 2019, 9, 3219-3227.	11.2	17
316	Phosphonate and α-Fluorophosphonate Analogue Probes of the Ionization State of Pyridoxal 5â€~-Phosphate (PLP) in Glycogen Phosphorylaseâ€. Biochemistry, 1996, 35, 15057-15064.	2.5	16
317	Fluorescently tagged iminoalditol glycosidase inhibitors as novel biological probes and diagnostics. Bioorganic and Medicinal Chemistry, 2006, 14, 1737-1742.	3.0	16
318	NMR Spectroscopic Characterization of a β-(1,4)-Glycosidase along Its Reaction Pathway:  Stabilization upon Formation of the Glycosylâ^'Enzyme Intermediate. Biochemistry, 2007, 46, 1759-1770.	2.5	16
319	Structure-based mutagenic analysis of mechanism and substrate specificity in mammalian glycosyltransferases: Porcine ST3Gal-I. Glycobiology, 2013, 23, 536-545.	2.5	16
320	7-Fluorosialyl Glycosides Are Hydrolysis Resistant but Readily Assembled by Sialyltransferases Providing Easy Access to More Metabolically Stable Glycoproteins. ACS Central Science, 2021, 7, 345-354.	11.3	16
321	Fine tuning of β-glucosidase inhibitory activity in the 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) system. Carbohydrate Research, 2006, 341, 1717-1722.	2.3	15
322	Identification of the catalytic nucleophile in Family 42 β-galactosidases by intermediate trapping and peptide mapping: YesZ fromBacillus subtilis. FEBS Letters, 2007, 581, 2441-2446.	2.8	15
323	Toward Efficient Enzymatic Glycan Synthesis: Directed Evolution and Enzyme Engineering. Journal of Carbohydrate Chemistry, 2011, 30, 181-205.	1.1	15
324	Glycosynthaseâ€Mediated Assembly of Xylanase Substrates and Inhibitors. ChemBioChem, 2011, 12, 1703-1711.	2.6	15

#	Article	IF	CITATIONS
325	Chemoenzymatic Synthesis of a Type 2 Blood Group A Tetrasaccharide and Development of High-throughput Assays Enables a Platform for Screening Blood Group Antigen-cleaving Enzymes. Glycobiology, 2015, 25, 806-811.	2.5	15
326	A new type of pharmacological chaperone for G M1 -gangliosidosis related human lysosomal β-galactosidase: N -Substituted 5-amino-1-hydroxymethyl-cyclopentanetriols. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3431-3435.	2.2	15
327	Proximity Ligationâ€Based Fluorogenic Imaging Agents for Neuraminidases. Angewandte Chemie - International Edition, 2018, 57, 13538-13541.	13.8	15
328	Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. Biotechnology for Biofuels, 2021, 14, 29.	6.2	15
329	Synthesis and Evaluation of Potential Inhibitors of Chondroitin AC Lyase from Flavobacterium heparinum. Journal of Organic Chemistry, 2002, 67, 4505-4512.	3.2	14
330	The chemical synthesis of 2-deoxy-2-fluorodisaccharide probes of the hen egg white lysozyme mechanism. Carbohydrate Research, 2005, 340, 379-388.	2.3	14
331	Evaluation of a New System for Developing Particulate Enzymes Based on the Surface (S)-Layer Protein (RsaA) of <i>Caulobacter crescentus</i> : Fusion With the b <i>-1,4-Glycanase (Cex) From the Cellulolytic Bacterium </i> Cellulomonas fimi <i> Yields a Robust, Catalytically Active Product. Applied Biochemistry and Biotechnology, 2005, 127, 095-110.</i>	2.9	14
332	Specificity Fingerprinting of Retaining βâ€1,4â€Glycanases in the <i>Cellulomonas fimi</i> Secretome Using Two Fluorescent Mechanismâ€Based Probes. ChemBioChem, 2007, 8, 2125-2132.	2.6	14
333	Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydrate Research, 2011, 346, 2028-2033.	2.3	14
334	A glyco-gold nanoparticle based assay for α-2,8-polysialyltransferase from Neisseria meningitidis. Chemical Communications, 2013, 49, 10166.	4.1	14
335	A plate-based high-throughput activity assay for polysialyltransferase from Neisseria meningitidis. Analytical Biochemistry, 2014, 444, 67-74.	2.4	14
336	Introducing transgalactosylation activity into a family 42 β-galactosidase. Glycobiology, 2017, 27, 425-437.	2.5	14
337	Family 4 glycoside hydrolases are special: The first β-elimination mechanism amongst glycoside hydrolases. Biocatalysis and Biotransformation, 2006, 24, 167-176.	2.0	13
338	An Atypical Approach Identifies TYR234 as the Key Base Catalyst in Chondroitin AC Lyase. ChemBioChem, 2006, 7, 631-637.	2.6	13
339	Towards universal red blood cells. Nature Biotechnology, 2007, 25, 427-428.	17.5	13
340	Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-d-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae. Microbial Cell Factories, 2016, 15, 171.	4.0	13
341	The Staudinger/aza-Wittig/Grignard reaction as key step for the concise synthesis of 1-C-Alkyl-iminoalditol glycomimetics. Carbohydrate Research, 2016, 429, 62-70.	2.3	13
342	5-Fluoro derivatives of 4-epi-isofagomine as d-galactosidase inhibitors and potential pharmacological chaperones for GM1-gangliosidosis as well as Fabry's disease. Carbohydrate Research, 2016, 420, 6-12.	2.3	13

#	Article	IF	CITATIONS
343	X-ray crystallographic structure of a bacterial polysialyltransferase provides insight into the biosynthesis of capsular polysialic acid. Scientific Reports, 2017, 7, 5842.	3.3	13
344	Synthesis and kinetic evaluation of 4-deoxymaltopentaose and 4-deoxymaltohexaose as inhibitors of muscle and potato α-glucan phosphorylases. Biochemical Journal, 1999, 338, 251-256.	3.7	12
345	Synthesis of 5-fluoro-β- <scp>D</scp> -glucopyranosyluronic acid fluoride and its evaluation as a mechanistic probe of <i>Escherichia coli </i> β-glucuronidase. Canadian Journal of Chemistry, 2001, 79, 510-518.	1.1	12
346	1-Deoxy-d-galactonojirimycins with dansyl capped N-substituents as β-galactosidase inhibitors and potential probes for GM1 gangliosidosis affected cell lines. Carbohydrate Research, 2011, 346, 1592-1598.	2.3	12
347	Synthesis of C-5a-chain extended derivatives of 4-epi-isofagomine: Powerful β-galactosidase inhibitors and low concentration activators of GM1-gangliosidosis-related human lysosomal β-galactosidase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1438-1442.	2.2	12
348	Remarkable Reactivity Differences between Glucosides with Identical Leaving Groups. Journal of the American Chemical Society, 2017, 139, 15994-15999.	13.7	12
349	Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nature Biomedical Engineering, 2021, 5, 1202-1216.	22.5	12
350	An Allosamizoline/Glucosamine Hybrid NAGase Inhibitor. Synlett, 1997, 1997, 435-436.	1.8	11
351	One Step Closer to a Sweet Conclusion. Chemistry and Biology, 2002, 9, 1270-1273.	6.0	11
352	Non-Stick Sugars: Synthesis of Difluorosugar Fluorides as Potential Glycosidase Inactivators. Australian Journal of Chemistry, 2009, 62, 590.	0.9	11
353	Synthesis and Biological Evaluation of 1,5-Dideoxy-1,5-iminoxylitol–Amino Acid Hybrids as Xylosidase Inhibitors. Australian Journal of Chemistry, 2009, 62, 553.	0.9	11
354	1-Deoxynojirimycins with dansyl capped N-substituents as probes for Morbus Gaucher affected cell lines. Carbohydrate Research, 2010, 345, 1371-1376.	2.3	11
355	Mechanisms of Enzymatic Glycosyl Transfer. , 2010, , 385-422.		11
356	Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids. Journal of the American Chemical Society, 2018, 140, 8268-8276.	13.7	11
357	High-Throughput Recovery and Characterization of Metagenome-Derived Glycoside Hydrolase-Containing Clones as a Resource for Biocatalyst Development. MSystems, 2019, 4, .	3.8	11
358	Design of the Recombinant Influenza Neuraminidase Antigen Is Crucial for Its Biochemical Properties and Protective Efficacy. Journal of Virology, 2021, 95, e0116021.	3.4	11
359	A convenient and high-yielding synthesis of 1,2,3,4,6-penta-O-acetyl-β-d-[1-2H]-glucopyranose. Carbohydrate Research, 1986, 156, 282-285.	2.3	10
360	Synthesis of 2-deoxy-2-[18F]-fluoro-β-mannosyl [18F]-fluoride as a potential imaging probe for Glycosidases. Journal of Labelled Compounds and Radiopharmaceuticals, 1992, 31, 1005-1009.	1.0	10

#	Article	IF	CITATIONS
361	Fluorinated Sugars as Probes of Glycosidase Mechanisms. ACS Symposium Series, 1996, , 279-293.	0.5	10
362	Synthesis of 2,6-dideoxy-2-fluoro-6-[18F]-fluoro-?-D-glucopyranosyl fluoride (2,6FGF) as a potential imaging probe for glucocerebrosidase. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, 385-394.	1.0	10
363	High-throughput screening of cell lysates for ganglioside synthesis. Analytical Biochemistry, 2008, 382, 48-54.	2.4	10
364	Syntheses of p-nitrophenyl 3- and 4-thio-β-d-glycopyranosides. Carbohydrate Research, 2010, 345, 2596-2604.	2.3	10
365	The role of the oligosaccharide binding cleft of rice BClu1 in hydrolysis of cellooligosaccharides and in their synthesis by rice BClu1 glycosynthase. Protein Science, 2012, 21, 362-372.	7.6	10
366	Fluoro-glycosyl acridinones are ultra-sensitive active site titrating agents for retaining β-glycosidases. Chemical Communications, 2014, 50, 9379-9382.	4.1	10
367	Proteolytic Cleavage Driven by Glycosylation. Journal of Biological Chemistry, 2016, 291, 429-434.	3.4	10
368	Characterization of a thermostable endoglucanase from <i>Cellulomonas fimi</i> ATCC484. Biochemistry and Cell Biology, 2018, 96, 68-76.	2.0	10
369	Structural Dissection of Helianthamide Reveals the Basis of Its Potent Inhibition of Human Pancreatic α-Amylase. Biochemistry, 2018, 57, 5384-5387.	2.5	10
370	Synthesis of montbretin A analogues yields potent competitive inhibitors of human pancreatic α-amylase. Chemical Science, 2019, 10, 11073-11077.	7.4	10
371	Quantification of the total neuraminidase content of recent commercially-available influenza vaccines: Introducing a neuraminidase titration reagent. Vaccine, 2020, 38, 715-718.	3.8	10
372	D-Glucosylated Derivatives of Isofagomine and Noeuromycin and Their Potential as Inhibitors of β-Glycoside Hydrolases. Australian Journal of Chemistry, 2007, 60, 549.	0.9	9
373	Discovery of New Glycosidases From Metagenomic Libraries. Methods in Enzymology, 2017, 597, 3-23.	1.0	9
374	Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating <i>N</i> - <scp>d</scp> -Acetylglucosamine and <scp>d</scp> -Glucosamine. Biochemistry, 2020, 59, 4581-4590.	2.5	9
375	Lipid-mimicking phosphorus-based glycosidase inactivators as pharmacological chaperones for the treatment of Gaucher's disease. Chemical Science, 2021, 12, 13909-13913.	7.4	9
376	Purification and quantitation of bacteriophage M13 using desalting spin columns and digital PCR. Journal of Virological Methods, 2012, 185, 171-174.	2.1	8
377	Rice BGlu1 glycosynthase and wild type transglycosylation activities distinguished by cyclophellitol inhibition. Carbohydrate Research, 2012, 352, 51-59.	2.3	8
378	Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydrate Research, 2013, 373, 35-41.	2.3	8

#	Article	IF	CITATIONS
379	Mechanistic Investigations of Unsaturated Glucuronyl Hydrolase from Clostridium perfringens. Journal of Biological Chemistry, 2014, 289, 11385-11395.	3.4	8
380	Chemoenzymatic synthesis of 6â€phospho yclophellitol as a novel probe of 6â€phosphoâ€Î²â€glucosidases. F Letters, 2016, 590, 461-468.	EBS 2.8	8
381	Oversized galactosides as a probe for conformational dynamics in LacY. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4146-4151.	7.1	8
382	Potent GH20 N-Acetyl-β-d-hexosaminidase Inhibitors: N-Substituted 3-acetamido-4-amino-5-hydroxymethyl-cyclopentanediols. Molecules, 2018, 23, 708.	3.8	8
383	Directed evolution of bacterial polysialyltransferases. Clycobiology, 2019, 29, 588-598.	2.5	8
384	Identification of Glu-519 as the catalytic nucleophile in β-mannosidase 2A from Cellulomonas fimi. Biochemical Journal, 2000, 351, 833.	3.7	7
385	Identification of Active Site Residues in Glycosidases by Use of Tandem Mass Spectrometry. , 2000, 146, 203-222.		7
386	Improvement of the expression level of β-glucosidase from Agrobacterium sp. in Escherichia coli by rare codon optimization. Food Science and Biotechnology, 2013, 22, 269-273.	2.6	7
387	A Morita-Baylis-Hillman based route to C -5a-chain-extended 4- epi -isofagomine type glycosidase inhibitors. Carbohydrate Research, 2017, 442, 31-40.	2.3	7
388	Discovery and Development of Promiscuous O-Glycan Hydrolases for Removal of Intact Sialyl T-Antigen. ACS Chemical Biology, 2021, 16, 2004-2015.	3.4	7
389	A Synthetic Gene Library Yields a Previously Unknown Glycoside Phosphorylase That Degrades and Assembles Poly-Î2-1,3-GlcNAc, Completing the Suite of Î2-Linked GlcNAc Polysaccharides. ACS Central Science, 2022, 8, 430-440.	11.3	7
390	Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes. ACS Central Science, 0, ,	11.3	7
391	Development of an assay and determination of kinetic parameters for chondroitin AC lyase using defined synthetic substrates. Analytical Biochemistry, 2002, 308, 77-82.	2.4	6
392	Glycosynthase-catalysed formation of modified polysaccharide microstructures. Biochemical Journal, 2004, 380, e9-e10.	3.7	6
393	Synthesis and biological evaluation of novel biotin–iminoalditol conjugates. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4077-4079.	2.2	6
394	Mechanistic Insights from Substrate Preference in Unsaturated Glucuronyl Hydrolase. ChemBioChem, 2014, 15, 124-134.	2.6	6
395	Difluorosialic acids, potent novel influenza virus neuraminidase inhibitors, induce fewer drug resistance-associated neuraminidase mutations than does oseltamivir. Virus Research, 2015, 210, 126-132.	2.2	6
396	Glycosynthase mediated synthesis of psychosine. Carbohydrate Research, 2016, 435, 97-99.	2.3	6

#	Article	IF	CITATIONS
397	Fungal Glycolipid Hydrolase Inhibitors and Their Effect on <i>Cryptococcus neoformans</i> . ChemBioChem, 2017, 18, 284-290.	2.6	6
398	N-Substituted 5-amino-1-hydroxymethyl-cyclopentanetriols: A new family of activity promotors for a G M1 -gangliosidosis related human lysosomal β-galactosidase mutant. Carbohydrate Research, 2017, 443-444, 15-22.	2.3	6
399	Identity and role of the non-conserved acid/base catalytic residue in the GH29 fucosidase from the spider Nephilingis cruentata. Glycobiology, 2018, 28, 925-932.	2.5	6
400	Facile Formation of βâ€ŧhioGlcNAc Linkages to Thiolâ€Containing Sugars, Peptides, and Proteins using a Mutant GH20 Hexosaminidase. Angewandte Chemie, 2019, 131, 1646-1651.	2.0	6
401	N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chemical Biology, 2021, 16, 701-711.	3.4	6
402	New Approaches to Enzymatic Oligosaccharide Synthesis: Glycosynthases and Thioglycoligases. Biocatalysis and Biotransformation, 2003, 21, 159-166.	2.0	6
403	Probing of glycosidase active sites through labeling, mutagenesis and kinetic studies. Progress in Biotechnology, 1995, , 97-111.	0.2	5
404	Assignment of selectively 13C-labeled cellopentaose synthesized using an engineered glycosynthase. Journal of Biomolecular NMR, 2001, 21, 67-68.	2.8	5
405	Mechanistic Analysis of the Blood Group Antigen-Cleaving <i>endo</i> -β-Galactosidase from <i>Clostridium perfringens</i> . Biochemistry, 2009, 48, 8396-8404.	2.5	5
406	Refolding the unfoldable: A systematic approach for renaturation of <i>Bacillus circulans</i> xylanase. Protein Science, 2017, 26, 1555-1563.	7.6	5
407	Proximity Ligationâ€Based Fluorogenic Imaging Agents for Neuraminidases. Angewandte Chemie, 2018, 130, 13726-13729.	2.0	5
408	A Mechanismâ€Based Approach to Screening Metagenomic Libraries for Discovery of Unconventional Glycosidases. Angewandte Chemie, 2018, 130, 11529-11534.	2.0	5
409	Passaging of an influenza A(H1N1)pdm09 virus in a difluoro sialic acid inhibitor selects for a novel, but unfit 1106M neuraminidase mutant. Antiviral Research, 2019, 169, 104542.	4.1	5
410	Synthesis and evaluation of sensitive coumarin-based fluorogenic substrates for discovery of α- <i>N</i> -acetyl galactosaminidases through droplet-based screening. Organic and Biomolecular Chemistry, 2021, 19, 789-793.	2.8	5
411	Identification of the Active-Site Nucleophile in 6-phospho-beta-galactosidase from Staphylococcus aureus by Labelling with Synthetic Inhibitors. FEBS Journal, 1995, 232, 658-663.	0.2	4
412	Identification of Active-Site Residues in Glycosidases. ACS Symposium Series, 1996, , 365-380.	0.5	4
413	Assessing the oral bioavailability of difluorosialic acid prodrugs, potent viral neuraminidase inhibitors, using a snapshot PK screening assay. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2505-2509.	2.2	4
414	Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angewandte Chemie, 2017, 129, 6208-6212.	2.0	4

#	Article	IF	CITATIONS
415	Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase. Monatshefte FA¼r Chemie, 2019, 150, 831-842.	1.8	4
416	Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4-epi-Isofagomine. Molecules, 2020, 25, 4025.	3.8	4
417	N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase. Molecules, 2020, 25, 4618.	3.8	4
418	New α-galactosidase-inhibiting aminohydroxycyclopentanes. RSC Advances, 2021, 11, 15943-15951.	3.6	4
419	The Chitopentaose Complex of a Mutant Hen Egg-White Lysozyme Displays No Distortion of the –1 Sugar Away from a 4C1 Chair Conformation. Australian Journal of Chemistry, 2009, 62, 528.	0.9	3
420	C-5a-substituted validamine type glycosidase inhibitors. Carbohydrate Research, 2017, 440-441, 1-9.	2.3	3
421	The p K a values of the catalytic residues in the retaining glycoside hydrolase T26H mutant of T4 lysozyme. Protein Science, 2018, 28, 620-632.	7.6	3
422	High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Applied and Environmental Microbiology, 2020, 86, .	3.1	3
423	Probing the role of an invariant active site His in family GH1 β-glycosidases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 973-980.	5.2	2
424	Biologically active branched-chain aminocyclopentane tetraols from d-galactose. Monatshefte Für Chemie, 2019, 150, 861-870.	1.8	2
425	Development of an active site titration reagent for α-amylases. Chemical Science, 2021, 12, 683-687.	7.4	2
426	Crystal structure of the <i>Propionibacterium acnes</i> surface sialidase, a drug target for <i>P. acnes</i> -associated diseases. Glycobiology, 2022, 32, 162-170.	2.5	2
427	Mammalian sialyltransferases allow efficient <i>Escherichia coli</i> -based production of mucin-type O-glycoproteins but can also transfer Kdo. Glycobiology, 2022, 32, 429-440.	2.5	2
428	Periplasmic de-acylase helps bacteria don their biofilm coat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10904-10905.	7.1	1
429	Discovery of β- <i>N</i> -acetylglucosaminidases from screening metagenomic libraries and their use as thioglycoligase mutants. Organic and Biomolecular Chemistry, 2021, 19, 9068-9075.	2.8	1
430	The Search for Human Alphaâ€Amylase Inhibitors as Therapeutics for Diabetes and Obesity. FASEB Journal, 2010, 24, 681.4.	0.5	1
431	Synthesis of 2,6â€dideoxyâ€2â€fluoroâ€6â€[¹⁸ F]â€fluoroâ€Î²â€Dâ€glucopyranosyl fluoride (2,6FC potential imaging probe for glucocerebrosidase. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S448.	GF) as a 1.0	0
432	How to make a difference: mechanisms of protein and nucleic acid modifying enzymes. Current Opinion in Chemical Biology, 2012, 16, 461-464.	6.1	0

#	Article	IF	CITATIONS
433	The acute effects of Montbretin A (MbA), an áâ€glucosidase inhibitor, on plasma glucose levels in the Zucker Diabetic Fatty rat. FASEB Journal, 2012, 26, .	0.5	ο

434 S2-6 Identifying and improving glycosidases through metagenomics and directed evolution(Recent) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5