List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612687/publications.pdf Version: 2024-02-01

Ραμγι Μαδάι ει

#	Article	IF	CITATIONS
1	Performance of Surface Plasmon Resonance Sensors Using Copper/Copper Oxide Films: Influence of Thicknesses and Optical Properties. Photonics, 2022, 9, 104.	2.0	13
2	Eu-Doped Pyrochlore Crystal Nano-Powders as Fluorescent Solid for Fingerprint Visualization and for Anti-Counterfeiting Applications. Materials, 2022, 15, 2423.	2.9	3
3	Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers. Polymers, 2022, 14, 26.	4.5	4
4	Green Emitting Rare Earth Gd ₂ O ₃ :Tb ³⁺ Nanoparticles for Rapid Imaging of Latent Fingerprint. Methods and Applications in Fluorescence, 2021, 9, 025002.	2.3	4
5	The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 2021, 14, 3265.	2.9	7
6	Luminescent Sm-doped aluminosilicate glass as a substrate for enhanced photoresponsivity of MoS2 based photodetector. Applied Surface Science, 2021, 565, 150342.	6.1	7
7	Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine. Sensors and Actuators B: Chemical, 2020, 303, 127229.	7.8	43
8	Simultaneous and selective determination of dopamine and tyrosine in the presence of uric acid with 2D-MoS2 nanosheets modified screen-printed carbon electrodes. FlatChem, 2020, 24, 100187.	5.6	19
9	The effect of rare earth element (Er, Yb) doping and heat treatment on suspension stability of Y2O3 nanoparticles elaborated by sol-gel method. Journal of Materials Research and Technology, 2020, 9, 12634-12642.	5.8	11
10	Photoinduced Enhanced Raman Spectroscopy with Hybrid Au@WS ₂ Nanosheets. Journal of Physical Chemistry C, 2020, 124, 20350-20358.	3.1	26
11	Spectroscopic characterization of Er,Yb:Y2Ti2O7 phosphor for latent fingerprint detection. Physica B: Condensed Matter, 2020, 582, 412009.	2.7	12
12	Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range. Optical Materials Express, 2020, 10, 1129.	3.0	22
13	Optical properties of peralkaline aluminosilicate glasses doped with Sm3+. Journal of Alloys and Compounds, 2019, 806, 1339-1347.	5.5	11
14	Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. Journal of Luminescence, 2019, 212, 354-360.	3.1	30
15	Spectroscopic Characterization of Er,Yb:Y2Ti2O7 Nanoparticles for Forensic Applications. , 2019, , .		0
16	Tb3+ as a probe for the molecular structure of mixed barium magnesium alumino silicate glasses. Journal of Luminescence, 2018, 199, 384-390.	3.1	21
17	Luminescence emission of Tm-Dy ions codoped tellurite glasses under visible light excitation. Optik, 2018, 160, 340-347.	2.9	9
18	Judd–Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. Journal of Luminescence, 2018, 201, 245-254.	3.1	27

#	Article	IF	CITATIONS
19	Green and near infrared emission of Er3+ doped PZS and PZC glasses. Journal of Luminescence, 2018, 194, 706-712.	3.1	32
20	Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd2O3. Materials, 2018, 11, 1790.	2.9	9
21	Thermal and Spectroscopic Properties of High Dense Optical Glasses TeO2–Bi2O3–WO3 (TBW) Doped with Er2O3 as Laser Material. Science of Advanced Materials, 2018, 10, 818-826.	0.7	6
22	Optical absorption and photoluminescence properties of chromium in different host glasses. Journal of Luminescence, 2017, 186, 152-157.	3.1	18
23	Efficient temperature sensing using photoluminescence of Er/Yb implanted GaN thin films. Sensors and Actuators B: Chemical, 2017, 248, 769-776.	7.8	39
24	Spectroscopic analysis of trivalent Nd 3+ /Yb 3+ ions codoped in PZS host glasses as a new laser material at 1.06 μm. Journal of Rare Earths, 2017, 35, 361-367.	4.8	31
25	Spectroscopic properties of Yb ²⁺ in aluminosilicate glass. International Journal of Applied Glass Science, 2017, 8, 322-328.	2.0	6
26	Judd-Ofelt parameters of the up-conversion phosphors: Er 3+ doped BaGd 2 ZnO 5 /PMMA and NaYF 4 /PMMA. Journal of Rare Earths, 2017, 35, 964-969.	4.8	9
27	The Effect of Solvents and Rare-Earth Element (Er, Yb) Doping on Suspension Stability of Sol–Gel Titania Nanoparticles. IEEE Transactions on Nanobioscience, 2017, 16, 718-726.	3.3	6
28	Editorial Special Section on Engineering Sciences in Biology and Medicine. IEEE Transactions on Nanobioscience, 2017, 16, 647-649.	3.3	0
29	Experimental and theoretical spectroscopic study of erbium doped aluminosilicate glasses. Journal of Luminescence, 2016, 176, 212-219.	3.1	16
30	Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent fingerprint detection. Sensors and Actuators B: Chemical, 2015, 220, 162-170.	7.8	83
31	Characterization of Tm3+ doped TNZL glass laser material. Journal of Luminescence, 2015, 161, 281-287.	3.1	36
32	Synthesis of non-toxic phosphor material based on pyrochlore-type dititanate (Eu3+/Y2Ti2O7). Journal of Photochemistry and Photobiology A: Chemistry, 2015, 301, 1-5.	3.9	12
33	Antireflective downconversion ZnO:Er3+,Yb3+ thin film for Si solar cell applications. Journal of Applied Physics, 2015, 117, .	2.5	22
34	Pr ³⁺ :BaY ₂ F ₈ Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties. Journal of Physical Chemistry C, 2015, 119, 2844-2851.	3.1	9
35	Growth and Properties of Amorphous Erbiumâ€doped Aluminumâ€yttrium Oxide Films Deposited by Aerosolâ€UVâ€Assisted MOCVD. Chemical Vapor Deposition, 2015, 21, 26-32.	1.3	4
36	Highly efficient NIR to visible upconversion in a ZnO:Er,Yb thin film deposited by a AACVD atmospheric pressure process. RSC Advances, 2015, 5, 60246-60253.	3.6	15

#	Article	IF	CITATIONS
37	Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging. Nanoscale Research Letters, 2015, 10, 215.	5.7	40
38	Thermal stability and spectroscopic properties of Ho3+ doped tellurite-borate glasses. Journal of Rare Earths, 2015, 33, 939-945.	4.8	27
39	Growth rate induced high efficient light trapping/photon conversion ZnO:Nd 3+ nanodisk shaped thin films deposited by AACVD process. Journal of Alloys and Compounds, 2015, 651, 756-763.	5.5	2
40	Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials. Journal of Alloys and Compounds, 2015, 620, 129-136.	5.5	63
41	Raman, green and infrared emission cross-sectionsof Er^3+ doped TZPPN tellurite glass. Optical Materials Express, 2014, 4, 597.	3.0	45
42	White light generation from Dy3+ doped tellurite glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 134, 55-63.	2.3	101
43	Efficient antireflective downconversion Er3+ doped ZnO/Si thin film. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1733-1738.	2.1	13
44	Enhanced up-conversion and temperature-sensing behaviour of Er ³⁺ and Yb ³⁺ co-doped Y ₂ Ti ₂ O ₇ by incorporation of Li ⁺ ions. Physical Chemistry Chemical Physics, 2014, 16, 22665-22676.	2.8	152
45	Antireflection and downconversion response of Nd3+ doped Y2O3/Si thin film deposited by AACVD process. Chemical Physics Letters, 2014, 612, 1-7.	2.6	4
46	Quantifying Raman and emission gain coefficients of Ho3+ doped TeO2·ZnO·PbO·PbF2·Na2O (TZPPN) tellurite glass. Solid State Sciences, 2014, 28, 74-80.	3.2	36
47	Structural and luminescence correlation of annealed Er-ZnO/Si thin films deposited by AACVD process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1124-1129.	3.5	22
48	Growth, optical spectroscopy and Judd–Ofelt analysis of Pr-doped BaY2F8 monocrystals. Journal of Luminescence, 2013, 143, 233-240.	3.1	30
49	1.55 μm emission and upconversion luminescence of Er3+-doped strontium borate glasses. Ceramics International, 2013, 39, 7023-7027.	4.8	23
50	Preparation and microstructural properties of erbium doped alumina–yttria oxide thin films deposited by aerosol MOCVD. Journal of Luminescence, 2013, 142, 52-56.	3.1	3
51	Thermal and spectroscopic properties of Tm3+ doped TZPPN transparent glass laser material. Journal of Non-Crystalline Solids, 2012, 358, 2974-2980.	3.1	38
52	Thermal stability and UV–Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass. Philosophical Magazine, 2012, 92, 899-911.	1.6	20
53	Effect of humidity and UV-assistance on the preparation of erbium doped alumina by aerosol MOCVD process. Applied Surface Science, 2012, 258, 2591-2596.	6.1	3
54	AIN content influence on the properties of AlxGa1â^'xN doped with Pr ions. Nuclear Instruments & Methods in Physics Research B, 2012, 273, 149-152.	1.4	4

#	Article	IF	CITATIONS
55	Effect of Humidity and UV Assistance on the Properties of Erbium Doped Yttrium Oxide Films Prepared by Aerosol-MOCVD. Chemical Vapor Deposition, 2011, 17, 93-97.	1.3	16
56	Theoretical and comparative investigations of Yb3+ ion in MWO4 and M′MoO4 scheelites crystals (M=Sr, Pb, Ca, Ba) and (M′=Sr, Pb, Ca, Cd). Physica B: Condensed Matter, 2011, 406, 315-318.	2.7	19
57	Influence of deposition conditions on the optical properties of erbium-doped yttrium oxide films grown by aerosol–UV assisted MOCVD. Journal of Luminescence, 2011, 131, 2311-2316.	3.1	13
58	A general trend of rare earth ions in the KRE(WO4)2 double tungstates (RE=Y, Yb, Gd, Lu). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 172, 89-95.	3.5	6
59	Crystal field analysis of Er3+ in Sc2O3 transparent ceramics. Journal of Luminescence, 2010, 130, 927-931.	3.1	16
60	Crystal-field hamiltonian and spin–orbit interaction for d2 and d8 ions at low C3 symmetry sites: V3+:Al2O3 and Ni2+:LiNbO3. Journal of Luminescence, 2009, 129, 411-415.	3.1	9
61	Theoretical investigations of EPR parameters and local structure of single erbium center in hexagonal GaN layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 183-185.	3.5	6
62	Electronic states of vanadium(III) in trans-VCl2(H2O)4+ chromophore. Journal of Alloys and Compounds, 2008, 453, 64-68.	5.5	3
63	Theoretical investigations of the optical spectra and EPR parameters for Yb3+ ions in GaN epilayer. Journal of Alloys and Compounds, 2007, 432, 18-22.	5.5	20
64	Crystal-field analysis for d8 ions at D4h symmetry sites: Electronic states in trans-NiCl2(H2O)4 complex. Journal of Luminescence, 2007, 124, 316-320.	3.1	7
65	Optical and crystal-field analysis of Er3+ ion in Y2O3–P2O5 thin films. Journal of Luminescence, 2007, 126, 165-170.	3.1	10
66	Theoretical investigation of a single erbium center in hexagonal gallium nitride. Journal of Luminescence, 2007, 126, 695-701.	3.1	13
67	Investigations of the optical spectra and EPR parameters for Yb3+ ion in (YAl3(BO3)4) crystals. Journal of Alloys and Compounds, 2006, 426, 43-45.	5.5	25
68	Crystal field analysis of erbium doped yttrium oxide thin films inC2 andC3i sites. Physica Status Solidi (B): Basic Research, 2003, 239, 193-202.	1.5	25
69	Crystal-Field Analysis of Er3+ Emission Spectrum in Epitaxial Ca1-xErxF2+x Thin Films. Physica Status Solidi (B): Basic Research, 2000, 221, 657-666.	1.5	15