List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5611315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies. Laboratory Investigation, 2022, 102, 185-193.	3.7	8
2	Synergistic anti-tumor efficacy of mutant isocitrate dehydrogenase 1 inhibitor SYC-435 with standard therapy in patient-derived xenograft mouse models of glioma. Translational Oncology, 2022, 18, 101368.	3.7	2
3	MODL-08. Cellular yield and xenograft creation from probe washing after stereotactic biopsy of deep-seated CNS tumors in children. Neuro-Oncology, 2022, 24, i170-i170.	1.2	0
4	HGC-01. A novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of PRC2 target genes and promotion of the NOTCH pathway. Neuro-Oncology, 2022, 24, i59-i59.	1.2	0
5	MODL-29. Molecular Landscape of a comprehensive panel of pediatric brain cancer Patient-derived orthotopic xenograft (PDOX) models inform unique targets for drug responsiveness. Neuro-Oncology, 2022, 24, i175-i175.	1.2	0
6	Abstract 912: A novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of PRC2 target genes. Cancer Research, 2022, 82, 912-912.	0.9	0
7	Regulation of TORC1 by MAPK Signaling Determines Sensitivity and Acquired Resistance to Trametinib in Pediatric <i>BRAFV600E</i> Brain Tumor Models. Clinical Cancer Research, 2022, 28, 3836-3849.	7.0	2
8	LiBis: an ultrasensitive alignment augmentation for low-input bisulfite sequencing. Briefings in Bioinformatics, 2021, 22, .	6.5	0
9	CRISPR editing of the GLI1 first intron abrogates GLI1 expression and differentially alters lineage commitment. Stem Cells, 2021, 39, 564-580.	3.2	6
10	Maximizing the potential of aggressive mouse tumor models in preclinical drug testing. Scientific Reports, 2021, 11, 11580.	3.3	2
11	Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. Advanced Science, 2021, 8, e2101923.	11.2	11
12	Mislocalized cytoplasmic p27 activates PAK1â€mediated metastasis and is a prognostic factor in osteosarcoma. Molecular Oncology, 2020, 14, 846-864.	4.6	10
13	Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. Science Advances, 2020, 6, .	10.3	42
14	Functional Precision Medicine Identifies New Therapeutic Candidates for Medulloblastoma. Cancer Research, 2020, 80, 5393-5407.	0.9	38
15	Impact of SCID mouse gender on tumorigenicity, xenograft growth and drug-response in a large panel of orthotopic PDX models of pediatric brain tumors. Cancer Letters, 2020, 493, 197-206.	7.2	6
16	C11orf95-RELA reprograms 3D epigenome in supratentorial ependymoma. Acta Neuropathologica, 2020, 140, 951-960.	7.7	11
17	Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers, 2020, 12, 1478.	3.7	21
18	Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 2020, 180, 502-520.e19.	28.9	99

#	Article	IF	CITATIONS
19	MBRS-17. EXAMINING THE ROLE OF LHX9 IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii401-iii401.	1.2	0
20	EPEN-53. C11orf95-RELA REPROGRAMS 3D EPIGENOME IN SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2020, 22, iii318-iii318.	1.2	0
21	TBIO-02. IMMUNE PROFILING OF RARE EMBRYONAL BRAIN TUMORS REVEAL EVIDENCE OF DYSREGULATED INTERFERON SIGNALLING AS A POTENTIAL DETERMINANT OF IMMUNOLOGICAL HETEROGENEITY. Neuro-Oncology, 2020, 22, iii467-iii467.	1.2	0
22	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers ls a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	16.8	69
23	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	27.8	273
24	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.	6.4	103
25	Transcriptional repressor REST drives lineage stage–specific chromatin compaction at <i>Ptch1</i> and increases AKT activation in a mouse model of medulloblastoma. Science Signaling, 2019, 12, .	3.6	19
26	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	1
27	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	27.8	94
28	Concurrent Inhibition of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A Inhibitor MLN8237 Predicted Survival Extension in PDOX Models. Clinical Cancer Research, 2018, 24, 2159-2170.	7.0	24
29	HGG-01. RADIATION INCREASES PRE-CLINICAL EFFICACY OF OLIG2 INHIBITOR CT-179 IN PEDIATRIC GBM. Neuro-Oncology, 2018, 20, i89-i89.	1.2	0
30	MBRS-62. REPRESSIVE CHROMATIN REMODELERS IN SHH-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i141-i141.	1.2	0
31	Systems biology–based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma. Science Translational Medicine, 2018, 10, .	12.4	54
32	PCLN-05. A BIOBANK OF PATIENT-DERIVED MOLECULARLY CHARACTERIZED ORTHOTOPIC PEDIATRIC BRAIN TUMOR MODELS FOR PRECLINICAL RESEARCH. Neuro-Oncology, 2018, 20, i155-i155.	1.2	0
33	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11, .	3.6	59
34	EPEN-13. NOVEL LSD-1 INHIBITOR VALIDATION IN NEWLY ESTABLISHED PFA EPENDYMOMA PATIENT-DERIVED ORTHOTOPIC XENOGRAFT (PDOX) MODELS. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
35	IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma. PLoS ONE, 2018, 13, e0193565.	2.5	18
36	Inhibition of Mutated Isocitrate Dehydrogenase 1 in Cancer. Medicinal Chemistry, 2018, 14, 715-724.	1.5	5

#	Article	IF	CITATIONS
37	Preclinical studies of BMI-1 modulator PTC596 in diffuse intrinsic pontine gliomas, pediatric high-grade gliomas and medulloblastoma Journal of Clinical Oncology, 2018, 36, e14051-e14051.	1.6	1
38	Pediatric preclinical testing consortium evaluation of the EZH2 inhibitor tazemetostat in orthotopic PDX models of pediatric brain tumors Journal of Clinical Oncology, 2018, 36, 10551-10551.	1.6	1
39	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
40	The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease. Journal of Neuro-Oncology, 2017, 132, 323-331.	2.9	27
41	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784.	6.4	31
42	EXTH-07. MUTANT ISOCITRATE DEHYDROGENASE 1 (IDH1) INHIBITOR SYC-435 SYNERGISTICALLY PROLONGS ANIMAL SURVIVAL WITH STANDARD THERAPIES IN PATIENT-DERIVED IDH1 MUTANT GLIOMA XENOGRAFT MOUSE MODELS. Neuro-Oncology, 2017, 19, vi74-vi74.	1.2	0
43	Xenotransplantation of pediatric low grade gliomas confirms the enrichment of <i>BRAF</i> V600E mutation and preservation of <i>CDKN2A</i> deletion in a novel orthotopic xenograft mouse model of progressive pleomorphic xanthoastrocytoma. Oncotarget, 2017, 8, 87455-87471.	1.8	21
44	Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3. Oncotarget, 2017, 8, 75232-75242.	1.8	9
45	A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Oncotarget, 2016, 7, 35776-35788.	1.8	17
46	EXTH-49. INTRAVENOUS INJECTION OF ONCOLYTIC PICORNAVIRUS SVV-001 PROLONGS ANIMAL SURVIVAL IN AÂNOVELPANEL OF PATIENT-DERIVED ORTHOTOPIC XENOGRAFT MOUSE MODELS OF ADULT GLIOBLASTOMA. Neuro-Oncology, 2016, 18, vi69-vi70.	1.2	0
47	TMOD-27. AUTOPSY DERIVED ORTHOTOPIC XENOGRAFT (ADOX) MOUSE MODELS FOR TERMINAL PEDIATRIC BRAIN TUMORS. Neuro-Oncology, 2016, 18, vi212-vi213.	1.2	0
48	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
49	Preservation of KIT genotype in a novel pair of patient-derived orthotopic xenograft mouse models of metastatic pediatric CNS germinoma. Journal of Neuro-Oncology, 2016, 128, 47-56.	2.9	13
50	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	16.8	204
51	Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Clioma. Molecular Therapy, 2016, 24, 354-363.	8.2	72
52	c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget, 2016, 7, 65946-65956.	1.8	37
53	CBIO-34MiR-126 AND miR-369-5p ARE DRIVERS OF GBM INVASION: AN IN VIVO STUDY IN PATIENT-TUMOR DERIVED ORTHOTOPIC XENOGRAFT MOUSE MODELS. Neuro-Oncology, 2015, 17, v62.1-v62.	1.2	1
54	Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts. PLoS ONE, 2015, 10, e0134276.	2.5	16

#	Article	IF	CITATIONS
55	BT-02 * FUNCTIONALLY-DEFINED THERAPEUTIC TARGETS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2015, 17, iii3-iii3.	1.2	2
56	Glycan Engagement Dictates Hydrocephalus Induction by Serotype 1 Reovirus. MBio, 2015, 6, e02356.	4.1	23
57	Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Research and Therapy, 2015, 6, 198.	5.5	40
58	Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Reports, 2015, 13, 2425-2439.	6.4	146
59	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
60	Cytogenetic landscape of paired neurospheres and traditional monolayer cultures in pediatric malignant brain tumors. Neuro-Oncology, 2015, 17, 965-977.	1.2	13
61	FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Human Pathology, 2015, 46, 1859-1871.	2.0	12
62	Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-Thiohydantoin Compounds. Journal of Medicinal Chemistry, 2015, 58, 6899-6908.	6.4	63
63	A phase I/II clinical trial of veliparib (ABT-888) and radiation followed by maintenance therapy with veliparib and temozolomide in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG): A Pediatric Brain Tumor Consortium Interim Report of Phase I Study Journal of Clinical Oncology, 2015, 33 10053-10053	1.6	2
64	SC-26 * CD57 DEFINES A NOVEL MAKER OF GLIOBLASTOMA STEM CELLS THAT HAVE GREATER INVASIVE POTENTIAL THAN CD133+ TUMOR CELLS. Neuro-Oncology, 2014, 16, v202-v203.	1.2	0
65	A patient tumor-derived orthotopic xenograft mouse model replicating the group 3 supratentorial primitive neuroectodermal tumor in children. Neuro-Oncology, 2014, 16, 787-799.	1.2	15
66	Pemetrexed and Gemcitabine as Combination Therapy for the Treatment of Group3 Medulloblastoma. Cancer Cell, 2014, 25, 516-529.	16.8	128
67	Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity. Journal of Medicinal Chemistry, 2014, 57, 8307-8318.	6.4	48
68	A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a Pediatric Brain Tumor Consortium reportâ€. Neuro-Oncology, 2014, 16, 1661-1668.	1.2	60
69	Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor–based orthotopic xenograft mouse models of pediatric glioma. Neuro-Oncology, 2013, 15, 1173-1185.	1.2	70
70	A phase I clinical trial of veliparib and temozolomide in children with recurrent central nervous system tumors: A Pediatric Brain Tumor Consortium report Journal of Clinical Oncology, 2013, 31, 2036-2036.	1.6	2
71	Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology, 2012, 14, 574-583.	1.2	138
72	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	27.8	376

#	Article	IF	CITATIONS
73	A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro-Oncology, 2011, 13, 14-27.	1.2	65
74	A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology, 2010, 12, 580-594.	1.2	79
75	Activation of the AMPK-FOXO3 Pathway Reduces Fatty Acid–Induced Increase in Intracellular Reactive Oxygen Species by Upregulating Thioredoxin. Diabetes, 2009, 58, 2246-2257.	0.6	204
76	Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma. Stem Cells, 2008, 26, 1414-1424.	3.2	127
77	Valproic Acid Prolongs Survival Time of Severe Combined Immunodeficient Mice Bearing Intracerebellar Orthotopic Medulloblastoma Xenografts. Clinical Cancer Research, 2006, 12, 4687-4694.	7.0	59
78	Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Molecular Cancer Therapeutics, 2005, 4, 1912-1922.	4.1	176
79	Phenylbutyrate and Phenylacetate Induce Differentiation and Inhibit Proliferation of Human Medulloblastoma Cells. Clinical Cancer Research, 2004, 10, 1150-1159.	7.0	59

80 A Role for Cardiac Glycosides in GBM Therapy. , 0, , .

0