Minas M Stylianakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610837/publications.pdf

Version: 2024-02-01

172457 168389 2,865 60 29 53 citations g-index h-index papers 63 63 63 5027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules, 2022, 27, 379.	3.8	10
2	Oxidative Desulfurization of Petroleum Distillate Fractions Using Manganese Dioxide Supported on Magnetic Reduced Graphene Oxide as Catalyst. Nanomaterials, 2021, 11, 203.	4.1	28
3	Tribological Performance Investigation of a Commercial Engine Oil Incorporating Reduced Graphene Oxide as Additive. Nanomaterials, 2021, 11, 386.	4.1	10
4	Highly Sensitive Humidity Sensors Based on Polyethylene Oxide/CuO/Multi Walled Carbon Nanotubes Composite Nanofibers. Materials, 2021, 14, 1037.	2.9	31
5	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11741-11754.	8.0	45
6	Distinguished Contributions in the Fields of Biomedical and Environmental Applications Incorporating Nanostructured Materials and Composites in Journal Molecules. Molecules, 2021, 26, 2112.	3.8	3
7	A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS. Applied Energy, 2021, 294, 117004.	10.1	16
8	Development of Waste Polystyrene-Based Copper Oxide/Reduced Graphene Oxide Composites and Their Mechanical, Electrical and Thermal Properties. Nanomaterials, 2021, 11, 2372.	4.1	13
9	Recent Advances in Chitin and Chitosan/Graphene-Based Bio-Nanocomposites for Energetic Applications. Polymers, 2021, 13, 3266.	4.5	19
10	Emphasizing the Operational Role of a Novel Graphene-Based Ink into High Performance Ternary Organic Solar Cells. Nanomaterials, 2020, 10, 89.	4.1	9
11	An extensive case study on the dispersion parameters of HI-assisted reduced graphene oxide and its graphene oxide precursor. Journal of Colloid and Interface Science, 2020, 580, 332-344.	9.4	13
12	Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100053.	5.6	24
13	A two-fold engineering approach based on Bi ₂ Te ₃ flakes towards efficient and stable inverted perovskite solar cells. Materials Advances, 2020, 1, 450-462.	5.4	21
14	Optoelectronic Nanodevices. Nanomaterials, 2020, 10, 520.	4.1	6
15	Biodegradable nanomaterials. , 2020, , 123-157.		5
16	Benzothiadiazole Based Cascade Material to Boost the Performance of Inverted Ternary Organic Solar Cells. Energies, 2020, 13, 450.	3.1	7
17	Organometallic hybrid perovskites for humidity and gas sensing applications., 2020,, 131-147.		3
18	Updating the Role of Reduced Graphene Oxide Ink on Field Emission Devices in Synergy with Charge Transfer Materials. Nanomaterials, 2019, 9, 137.	4.1	17

#	Article	IF	CITATIONS
19	Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cells. Nanoscale Advances, 2019, 1, 3107-3118.	4.6	35
20	Building an Organic Solar Cell: Fundamental Procedures for Device Fabrication. Energies, 2019, 12, 2188.	3.1	20
21	Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials, 2019, 12, 859.	2.9	100
22	Grapheneâ€Based Inverted Planar Perovskite Solar Cells: Advancements, Fundamental Challenges, and Prospects. Chemistry - an Asian Journal, 2018, 13, 240-249.	3.3	16
23	Ternary organic solar cells incorporating zinc phthalocyanine with improved performance exceeding 8.5%. Dyes and Pigments, 2017, 146, 408-413.	3.7	23
24	Ternary solution-processed organic solar cells incorporating 2D materials. 2D Materials, 2017, 4, 042005.	4.4	36
25	Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells., 2017,,.		4
26	Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment. 2D Materials, 2016, 3, 015003.	4.4	9
27	Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horizons, 2016, 1, 375-382.	8.0	43
28	Functionalized Graphene as an Electronâ€Cascade Acceptor for Airâ€Processed Organic Ternary Solar Cells. Advanced Functional Materials, 2015, 25, 3870-3880.	14.9	67
29	Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale, 2015, 7, 17827-17835.	5.6	42
30	Organic Solar Cells: Photochemical Synthesis of Solutionâ€Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells (Advanced Optical Materials 5/2015). Advanced Optical Materials, 2015, 3, 596-596.	7.3	1
31	Efficiency enhancement of organic photovoltaic devices by embedding uncapped Al nanoparticles in the hole transport layer. RSC Advances, 2015, 5, 71704-71708.	3.6	17
32	Photochemical Synthesis of Solutionâ€Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells. Advanced Optical Materials, 2015, 3, 658-666.	7.3	41
33	Enhanced Field Emission of WS ₂ Nanotubes. Small, 2014, 10, 2398-2403.	10.0	45
34	Enhanced Field Emission from Reduced Graphene Oxide Polymer Composites. ACS Applied Materials & Samp; Interfaces, 2014, 6, 388-393.	8.0	44
35	Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430, 108-112.	9.4	752
36	Optical limiting action of few layered graphene oxide dispersed in different solvents. Optical Materials, 2013, 36, 112-117.	3.6	60

3

#	Article	IF	Citations
37	Flexible Organic Photovoltaic Cells with In Situ Nonthermal Photoreduction of Spinâ€Coated Graphene Oxide Electrodes. Advanced Functional Materials, 2013, 23, 2742-2749.	14.9	167
38	Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale, 2013, 5, 4144.	5.6	57
39	Solution-processable graphene linked to 3,5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices. Carbon, 2012, 50, 5554-5561.	10.3	32
40	Organic Bulk Heterojunction Photovoltaic Devices Based on Polythiophene–Graphene Composites. ACS Applied Materials & Devices, 2012, 4, 4864-4870.	8.0	52
41	Efficiency enhancement of organic photovoltaics by addition of carbon nanotubes into both active and hole transport layer. Applied Physics Letters, 2012, 100, .	3.3	26
42	Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer. Applied Physics Letters, 2012, 100, .	3.3	94
43	Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Solar Energy Materials and Solar Cells, 2012, 96, 298-301.	6.2	59
44	Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 2011, 520, 1238-1241.	1.8	79
45	Plasmonic organic photovoltaics doped with metal nanoparticles. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 184-189.	2.0	40
46	A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2010, 94, 267-274.	6.2	70
47	Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. Journal of Materials Chemistry, 2010, 20, 561-567.	6.7	90
48	Alternating phenylenevinylene copolymers with dithienbenzothiadiazole moieties: Synthesis, photophysical, and photovoltaic properties. Journal of Applied Polymer Science, 2009, 114, 2740-2750.	2.6	1
49	Efficient hybrid bulk heterojunction solar cells based on phenylenevinylene copolymer, perylene bisimide and TiO2. Solar Energy Materials and Solar Cells, 2009, 93, 1792-1800.	6.2	29
50	Synthesis, photophysical and photovoltaic properties of star-shaped molecules with triphenylamine as core and phenylethenylthiophene or dithienylethylene as arms. Solar Energy Materials and Solar Cells, 2009, 93, 1952-1958.	6.2	28
51	Bulk heterojunction organic photovoltaic devices based on low band gap small molecule BTD-TNP and perylene–anthracene diimide. Solar Energy Materials and Solar Cells, 2009, 93, 2025-2028.	6.2	56
52	Low band gap vinylene compounds with triphenylamine and benzothiadiazole segments for use in photovoltaic cells. Organic Electronics, 2009, 10, 1320-1333.	2.6	59
53	Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells. Journal of Power Sources, 2009, 194, 1171-1179.	7.8	43
54	Alternating phenylenevinylene and thienylenevinylene copolymers with cyano groups: Synthesis, photophysics and photovoltaics. Synthetic Metals, 2009, 159, 142-147.	3.9	10

#	Article	IF	CITATION
55	New 4,7-dithienebenzothiadiazole derivatives with cyano-vinylene bonds: Synthesis, photophysics and photovoltaics. Synthetic Metals, 2009, 159, 1471-1477.	3.9	11
56	A Novel Alternating Phenylenevinylene Copolymer with Perylene Bisimide Units: Synthesis, Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2009, 113, 7904-7912.	3.1	95
57	Synthesis of perylene monoimide derivative and its use for quasi-solid-state dye-sensitized solar cells based on bare and modified nano-crystalline ZnO photoelectrodes. Energy and Environmental Science, 2009, 2, 1293.	30.8	24
58	Novel p-Phenylenevinylene Compounds Containing Thiophene or Anthracene Moieties and Cyanoâ^Vinylene Bonds for Photovoltaic Applications. ACS Applied Materials & Diterfaces, 2009, 1, 1711-1718.	8.0	36
59	Effect of the Incorporation of a Low-Band-Gap Small Molecule in a Conjugated Vinylene Copolymer: PCBM Blend for Organic Photovoltaic Devices. ACS Applied Materials & Devices, 2009, 1, 1370-1374.	8.0	38
60	Novel blue-greenish electroluminescent poly(fluorenevinylene-alt-dibenzothiophenevinylene)s and their model compounds. Journal of Polymer Science Part A, 2006, 44, 6790-6800.	2.3	28