David M Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609964/publications.pdf

Version: 2024-02-01

43 papers

1,167 citations

394421 19 h-index 395702 33 g-index

45 all docs

45 docs citations

45 times ranked

1656 citing authors

#	Article	IF	CITATIONS
1	Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorganic and Medicinal Chemistry, 2022, 54, 116557.	3.0	5
2	Query-guided protein–protein interaction inhibitor discovery. Chemical Science, 2021, 12, 4753-4762.	7.4	5
3	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	4.1	62
4	Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. Journal of Medicinal Chemistry, 2017, 60, 668-680.	6.4	38
5	Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. Journal of Medicinal Chemistry, 2017, 60, 6998-7011.	6.4	28
6	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	2.5	131
7	The creation and characterisation of a National Compound Collection: the Royal Society of Chemistry pilot. Chemical Science, 2016, 7, 3869-3878.	7.4	8
8	Discovery of potent, selective small molecule inhibitors of α-subtype of type III phosphatidylinositol-4-kinase (PI4KIIIα). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3189-3193.	2.2	11
9	Optimization of a Novel Binding Motif to (<i>E</i>)-3-(3,5-Difluoro-4-((1 <i>R</i>)-3 <i>R</i>)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1 <i>H Acid (AZD9496), a Potent and Orally Bioavailable Selective Estrogen Receptor Downregulator and Antagonist. Journal of Medicinal Chemistry. 2015. 58. 8128-8140.</i>	/i¿pyrido	[3,4- <i>b</i>
10	Compound Passport Service: supporting corporate collection owners in open innovation. Drug Discovery Today, 2015, 20, 1250-1255.	6.4	4
11	Collaborative practices for medicinal chemistry research across the big pharma and not-for-profit interface. Drug Discovery Today, 2014, 19, 496-501.	6.4	8
12	Potent, selective small molecule inhibitors of type III phosphatidylinositol-4-kinase α- but not β-inhibit the phosphatidylinositol signaling cascade and cancer cell proliferation. Chemical Communications, 2014, 50, 5388-5390.	4.1	28
13	Discovery and development of the anticancer agent gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase., 2013,, 255-281.		1
14	Abstract 2228: Phosphatidylinositol-4-kinase - Potent and selective inhibitors of PI4Kα and PI4Kβ, 2013, , .		1
15	Protein–Ligand Crystal Structures Can Guide the Design of Selective Inhibitors of the FGFR Tyrosine Kinase. Journal of Medicinal Chemistry, 2012, 55, 5003-5012.	6.4	42
16	Flexible and Scalable Route to HDAc Inhibitors Containing an Unusual Trisubstituted Pyridine Core. Organic Process Research and Development, 2012, 16, 1283-1292.	2.7	7
17	Small-molecule androgen receptor downregulators as an approach to treatment of advanced prostate cancer. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5442-5445.	2.2	42
18	Fischer synthesis of isomeric thienopyrrole LHRH antagonists. Tetrahedron, 2009, 65, 5805-5816.	1.9	10

#	Article	IF	Citations
19	Design and campaign synthesis of piperidine- and thiazole-based histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2580-2584.	2.2	13
20	Design and campaign synthesis of pyridine-based histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2525-2529.	2.2	11
21	Imidazole piperazines: SAR and development of a potent class of cyclin-dependent kinase inhibitors with a novel binding mode. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4442-4446.	2.2	32
22	Imidazoles: SAR and development of a potent class of cyclin-dependent kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5487-5492.	2.2	28
23	Imidazole pyrimidine amides as potent, orally bioavailable cyclin-dependent kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6486-6489.	2.2	34
24	The discovery of AZD5597, a potent imidazole pyrimidine amide CDK inhibitor suitable for intravenous dosing. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6369-6373.	2.2	41
25	Optimization of Novel Acyl Pyrrolidine Inhibitors of Hepatitis C Virus RNA-Dependent RNA Polymerase Leading to a Development Candidate. Journal of Medicinal Chemistry, 2007, 50, 897-900.	6.4	94
26	Applications of the amino-Cope rearrangement: synthesis of tetrahydropyran, \hat{l} -lactone and piperidine targets. Organic and Biomolecular Chemistry, 2005, 3, 809-815.	2.8	7
27	Preparation of NewN-Heterocyclic Carbene Metal-Alkyne Complexes and Application to a Stereocontrolled Pauson-Khand Reaction. Synlett, 2004, 2004, 2103-2106.	1.8	1
28	Short and Versatile Route to a Key Intermediate for Lactacystin Synthesis ChemInform, 2003, 34, no.	0.0	0
29	The Design of Potent, Non-Peptidic Inhibitors of Hepatitis C Protease. ChemInform, 2003, 34, no.	0.0	0
30	Design and Synthesis of Spiro-cyclopentenyl and Spiro-[1,3]-dithiolanyl Substituted Pyrrolidine-5,5-trans-lactams as Inhibitors of Hepatitis C Virus NS3/4A Protease ChemInform, 2003, 34, no.	0.0	0
31	The design of potent, non-peptidic inhibitors of hepatitis C protease. European Journal of Medicinal Chemistry, 2003, 38, 339-343.	5.5	19
32	Design and synthesis of spiro-cyclopentenyl and spiro-dithiolanyl substituted pyrrolidine-5,5-trans-lactams as inhibitors of hepatitis C virus NS3/4A protease. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1657-1660.	2.2	7
33	Short and Versatile Route to a Key Intermediate for Lactacystin Synthesis. Organic Letters, 2003, 5, 353-355.	4.6	33
34	Pyrrolidine-5,5-trans-lactams. 5. Pharmacokinetic Optimization of Inhibitors of Hepatitis C Virus NS3/4A Protease. Organic Letters, 2003, 5, 4631-4634.	4.6	16
35	Pyrrolidine-5,5-trans-lactams. 4. Incorporation of a P3/P4 Urea Leads to Potent Intracellular Inhibitors of Hepatitis C Virus NS3/4A Protease. Organic Letters, 2003, 5, 4627-4630.	4.6	18
36	Pyrrolidine-5,5-trans-lactams. 1. Synthesis and Incorporation into Inhibitors of Hepatitis C Virus NS3/4A Protease. Organic Letters, 2002, 4, 4475-4478.	4.6	25

#	Article	IF	CITATION
37	Pyrrolidine-5,5-trans-lactams. 2. The Use of X-ray Crystal Structure Data in the Optimization of P3 and P4 Substituents. Organic Letters, 2002, 4, 4479-4482.	4.6	13
38	Design and synthesis of ethyl pyrrolidine-5,5-trans-lactams as inhibitors of hepatitis C virus NS3/4A protease. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3359-3362.	2.2	15
39	A Convenient Procedure for the Preparation of Camphorsulfonyl Oxaziridines. Journal of Organic Chemistry, 1997, 62, 6093-6094.	3.2	15
40	Asymmetric sulfoxidation using [(3,3-Dimethoxycamphoryl)sulfonyl]oxaziridine. Tetrahedron: Asymmetry, 1995, 6, 2911-2914.	1.8	54
41	Highly Enantioselective Catalytic Asymmetric Oxidation of Sulfides using Hydrogen Peroxide. Synlett, 1995, 1995, 773-775.	1.8	32
42	A new system for catalytic asymmetric oxidation of sulfides using a hydrogen peroxide based reagent. Tetrahedron Letters, 1994, 35, 9629-9632.	1.4	56
43	Synthesis of a dinucleoside 3′-S-phosphorothiolate containing 2′-deoxy-3′-thioadenosine. Tetrahedron, 1992, 48, 2729-2738.	1.9	14