Michel Renou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560935/publications.pdf

Version: 2024-02-01

201674 254184 2,018 60 27 citations h-index papers

43 g-index 62 62 62 1641 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 2004, 78, 83-92.	3.6	221
2	Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Frontiers in Physiology, 2019, 10, 972.	2.8	132
3	Insect Parapheromones in Olfaction Research and Semiochemical-Based Pest Control Strategies. Annual Review of Entomology, 2000, 45, 605-630.	11.8	122
4	Characterization of an Antennal Carboxylesterase from the Pest Moth Spodoptera littoralis Degrading a Host Plant Odorant. PLoS ONE, 2010, 5, e15026.	2.5	96
5	Male-produced aggregation pheromone of the american palm weevil,Rhynchophorus palmarum (L.) (Coleoptera, Curculionidae): Collection, identification, electrophysiogical activity, and laboratory bioassay. Journal of Chemical Ecology, 1991, 17, 2127-2141.	1.8	82
6	Plant Terpenes Affect Intensity and Temporal Parameters of Pheromone Detection in a Moth. Chemical Senses, 2009, 34, 763-774.	2.0	66
7	Structure and function of the antennal sensilla of the palm weevil Rhynchophorus palmarum (Coleoptera, Curculionidae). Journal of Insect Physiology, 2003, 49, 857-872.	2.0	64
8	Bisabolene epoxides in sex pheromone innezara viridula (L.) (Heteroptera: Pentatomidae): Role ofcis isomer and relation to specificity of pheromone. Journal of Chemical Ecology, 1994, 20, 3133-3147.	1.8	58
9	Insect olfactory communication in a complex and changing world. Current Opinion in Insect Science, 2020, 42, 1-7.	4.4	58
10	The Influence of Substrate on Male Responsiveness to the Female Calling Song in Nezara viridula. Journal of Insect Behavior, 2001, 14, 313-332.	0.7	55
11	Systematic Synthesis of Multifluorinated $\hat{i}_{\pm},\hat{i}_{\pm}$ -Difluoro- \hat{i}^3 -lactones through Intramolecular Radical Cyclization. Journal of Organic Chemistry, 1999, 64, 252-265.	3.2	53
12	Male bugs modulate pheromone emission in response to vibratory signals from conspecifics. Journal of Chemical Ecology, 2003, 29, 561-574.	1.8	48
13	Interactions between Acetoin, a Plant Volatile, and Pheromone In Rhynchophorus palmarum: Behavioral and Olfactory Neuron Responses. Journal of Chemical Ecology, 2005, 31, 1789-1805.	1.8	45
14	Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. Insects, 2014, 5, 399-422.	2.2	40
15	Activity of male pheromone of Melanesian rhinoceros beetle Scapanes australis. Journal of Chemical Ecology, 2002, 28, 479-500.	1.8	39
16	Sex pheromone reception in Mamestra brassicae L. (Lepidoptera): Responses of olfactory receptor neurones to minor components of the pheromone blend. Journal of Insect Physiology, 1994, 40, 75-85.	2.0	38
17	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2473-2485.	1.8	36
18	Electrophysiological responses to salts from antennal chaetoid taste sensilla of the ground beetle Pterostichus aethiops. Journal of Insect Physiology, 2004, 50, 1001-1013.	2.0	36

#	Article	IF	CITATIONS
19	Male Aggregation Pheromone of Date Palm Fruit Stalk Borer Oryctes elegans. Journal of Chemical Ecology, 2004, 30, 387-407.	1.8	35
20	Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. Journal of Chemical Ecology, 1996, 22, 1087-1102.	1.8	34
21	Ca2+ Stabilizes the Membrane Potential of Moth Olfactory Receptor Neurons at Rest and Is Essential for Their Fast Repolarization. Chemical Senses, 2007, 32, 305-317.	2.0	32
22	Pheromones and General Odor Perception in Insects. Frontiers in Neuroscience, 2014, , 23-56.	0.0	32
23	Asymmetric synthesis of both enantiomers of $\hat{l}\pm,\hat{l}\pm$ -difluoroeldanolide: An interesting property of their biological activity. Tetrahedron Letters, 1998, 39, 4071-4074.	1.4	31
24	A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones. PLoS ONE, 2011, 6, e26443.	2.5	31
25	Pheromone response inhibitors of the corn stalk borer Sesamia nonagrioides. Biological evaluation and toxicology. Journal of Chemical Ecology, 2001, 27, 1879-1897.	1.8	30
26	Unexpected plant odor responses in a moth pheromone system. Frontiers in Physiology, 2015, 6, 148.	2.8	30
27	Brief Exposure to Sensory Cues Elicits Stimulus-Nonspecific General Sensitization in an Insect. PLoS ONE, 2012, 7, e34141.	2.5	30
28	Sense organs on the antennal flagellum of the green stink bug, Nezara viridula (L.) (Heteroptera :) Tj ETQq0 0 0 r Arthropod Structure and Development, 1996, 25, 427-441.	gBT /Over 0.4	lock 10 Tf 50 29
29	Synthesis and Biological Activity of Point-Fluorinated Pheromone Analogues of Eldana saccharina. European Journal of Organic Chemistry, 2004, 2004, 406-412.	2.4	29
30	Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta:) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
31	Changes in Odor Background Affect the Locomotory Response to Pheromone in Moths. PLoS ONE, 2013, 8, e52897.	2.5	29
32	Pheromone Modulates Plant Odor Responses in the Antennal Lobe of a Moth. Chemical Senses, 2014, 39, 451-463.	2.0	26
33	Responses to pheromone compounds in Mamestra suasa (Lepidoptera: Noctuidae) olfactory neurones. Journal of Insect Physiology, 1989, 35, 837-845.	2.0	24
34	Electrophysiological and field activity of halogenated analogs of (E,E)-8,10-dodecadien-1-ol, the main pheromone component, in codling moth (Cydia pomonella L.). Journal of Chemical Ecology, 1994, 20, 489-503.	1.8	24
35	Development and Pheromone Communication Systems in Hybrids of Agrotis ipsilon and Agrotis segetum (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1997, 23, 191-209.	1.8	24
36	Multivariate analysis of the correlation between noctuidae subfamilies and the chemical structure of their sex pheromones or male attractants. Journal of Chemical Ecology, 1988, 14, 1187-1215.	1.8	21

#	Article	IF	CITATIONS
37	Responses of the olfactory receptor neurons of the corn stalk borerSesamia nonagrioides to components of the pheromone blend and their inhibition by a trifluoromethyl ketone analogue of the main component. Pest Management Science, 2004, 60, 719-726.	3.4	19
38	A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth. Frontiers in Physiology, 2017, 8, 79.	2.8	17
39	Olfactory signal coding in an odor background. BioSystems, 2015, 136, 35-45.	2.0	16
40	Electroantennographic analysis of sex pheromone specificity in neotropical Catocalinae (Lepidoptera:) Tj ETQq0 C	0 o rgBT /C 2.0	overlock 10 T
41	Reinvestigation of Female Sex Pheromone of Processionary Moth (Thaumetopoea pityocampa): No Evidence for Minor Components. Journal of Chemical Ecology, 1997, 23, 713-726.	1.8	14
42	Electrophysiological study of the effects of deltamethrin, bioresmethrin, and DDT on the activity of pheromone receptor neurones in two moth species. Pesticide Biochemistry and Physiology, 1992, 43, 103-115.	3.6	13
43	Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella (L.). Die Naturwissenschaften, 2007, 94, 449-458.	1.6	11
44	Possible Origin of Modified EAG Activity by Point-Fluorination of the Insect Pheromone Eldanolide. European Journal of Organic Chemistry, 2005, 2005, 2777-2781.	2.4	10
45	A plant volatile alters the perception of sex pheromone blend ratios in a moth. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 553-570.	1.6	10
46	A comparative study of sex pheromone reception in the Hadeninae (Lepidoptera: Noctuidae). Physiological Entomology, 1991, 16, 87-97.	1.5	9
47	Disruption of responses to pheromone by (Z)-11-hexadecenyl trifluoromethyl ketone, an analogue of the pheromone, in the cabbage armywormMamestra brassicae. Pest Management Science, 2002, 58, 839-844.	3.4	9
48	Identification of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. Journal of Chemical Ecology, 2015, 41, 446-457.	1.8	9
49	Sex pheromone reception in the moth, Mamestra thalassina. Characterization and distribution of two types of olfactory hairs. Journal of Insect Physiology, 1991, 37, 617-626.	2.0	8
50	Possible origin of modified EAG activity by point-fluorination of insect pheromones. Future Medicinal Chemistry, 2009, 1, 835-845.	2.3	8
51	Oviposition of resistant and susceptible strains of Drosophila melanogaster in the presence of deltamethrin. Entomologia Experimentalis Et Applicata, 1997, 84, 173-181.	1.4	7
52	Electrophysiological and Behavioral Responses of a Cuban Population of the Sweet Potato Weevil to its Sex Pheromone. Journal of Chemical Ecology, 2006, 32, 2177-2190.	1.8	6
53	Modulatory effects of pheromone on olfactory learning and memory in moths. Journal of Insect Physiology, 2020, 127, 104159.	2.0	6
54	Utilisation du tétradécène Z7AL1 pour la mise au point d'une méthode de piégeage sexuel chez Prays oleae Bern. (Lep. Hyponomeutidae). Agronomy for Sustainable Development, 1981, 1, 115-121.	0.8	4

#	Article	IF	CITATIONS
55	Les acétoxy-1 tétradécène-11 Z et 11 E (Z 11 TDA et E 11 TDA), constituants de la phéromone sexuelle Argyrotaenia pulchellana (Haw.) (Lepid., Tortricinae, Archipini). Agronomy for Sustainable Development, 1984, 4, 565-572.	de 0.8	4
56	Un attractif sexuel pour la tordeuse des bourgeons : Archips xylosteana L. (Lepid., Tortricidae,) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 702
57	Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. Insects, 2021, 12, 409.	2.2	3
58	Is the evolution of insect odorscapes under anthropic pressures a risk for herbivorous insect invasions?. Current Opinion in Insect Science, 2022, 52, 100926.	4.4	3
59	Functional Characterization of Insect Olfactory Receptor Neurons Through In Vivo Approaches. Methods in Molecular Biology, 2013, 1003, 173-186.	0.9	2
60	A first glance on the molecular mechanisms of pheromone-plant odor interactions in moth antennae. Frontiers in Cellular Neuroscience, 2012, 6, 46.	3.7	1