
Jose Alejandro Bohorquez Garzon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609271/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of the E ^{rns} RNase Activity and of the 3′ Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease. Journal of Virology, 2022, 96, .	3.4	2
2	Abrogation of the RNase activity of E ^{rns} in a low virulence classical swine fever virus enhances the humoral immune response and reduces virulence, transmissibility, and persistence in pigs. Virulence, 2021, 12, 2037-2049.	4.4	4
3	A Novel E2 Glycoprotein Subunit Marker Vaccine Produced in Plant Is Able to Prevent Classical Swine Fever Virus Vertical Transmission after Double Vaccination. Vaccines, 2021, 9, 418.	4.4	8
4	Early and Solid Protection Afforded by the Thiverval Vaccine Provides Novel Vaccination Alternatives Against Classical Swine Fever Virus. Vaccines, 2021, 9, 464.	4.4	5
5	The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transboundary and Emerging Diseases, 2021, , .	3.0	7
6	Development of a Dendrimeric Peptide-Based Approach for the Differentiation of Animals Vaccinated with FlagT4G against Classical Swine Fever from Infected Pigs. Viruses, 2021, 13, 1980.	3.3	3
7	Classical swine fever virus: the past, present and future. Virus Research, 2020, 289, 198151.	2.2	93
8	Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus. Viruses, 2020, 12, 775.	3.3	8
9	Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection. Pathogens, 2020, 9, 285.	2.8	9
10	A Polyuridine Insertion in the 3′ Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. Journal of Virology, 2020, 94, .	3.4	13
11	Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Veterinary Research, 2019, 15, 247.	1.9	31
12	Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses, 2019, 11, 822.	3.3	9
13	Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3Âweeks after birth. Transboundary and Emerging Diseases, 2019, 66, 752-762.	3.0	13
14	Atypical porcine pestivirus in wild boar (<i>Sus scrofa</i>), Spain. Veterinary Record, 2018, 183, 569-569.	0.3	16
15	A bivalent dendrimeric peptide bearing a T-cell epitope from foot-and-mouth disease virus protein 3A improves humoral response against classical swine fever virus. Virus Research, 2017, 238, 8-12.	2.2	9
16	Classical Swine Fever Virus vs. Classical Swine Fever Virus: The Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar. PLoS ONE, 2016, 11, e0149469.	2.5	19
17	Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs. Veterinary Research, 2015, 46, 78.	3.0	27