Francesca D'Anna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560857/publications.pdf

Version: 2024-02-01

126 papers 3,253 citations

34 h-index 214800 47 g-index

134 all docs

134 docs citations

134 times ranked 2828 citing authors

#	Article	IF	Citations
1	lonic liquids as extraction solvents for removal of dyes. , 2022, , 123-140.		O
2	Bio-based chitosan and cellulose ionic liquid gels: polymeric soft materials for the desulfurization of fuel. Green Chemistry, 2022, 24, 1318-1334.	9.0	17
3	The Role Played by Ionic Liquids in Carbohydrates Conversion into 5-Hydroxymethylfurfural: A Recent Overview. Molecules, 2022, 27, 2210.	3.8	3
4	Highly recyclable surfactant-based supramolecular eutectogels for iodine removal. Journal of Molecular Liquids, 2022, 362, 119712.	4.9	5
5	Insights into the effect of the spacer on the properties of imidazolium based AIE luminogens. Dyes and Pigments, 2021, 186, 109035.	3.7	6
6	Carbon-based ionic liquid gels: alternative adsorbents for pharmaceutically active compounds in wastewater. Environmental Science: Nano, 2021, 8, 131-145.	4.3	6
7	Solvatochromic behaviour of new donor–acceptor oligothiophenes. New Journal of Chemistry, 2021, 45, 11636-11643.	2.8	1
8	Natural eutectogels: sustainable catalytic systems for C–C bond formation reactions. Green Chemistry, 2021, 23, 6555-6565.	9.0	16
9	Interplay of Acidity and Ionic Liquid Structure on the Outcome of a Heterocyclic Rearrangement Reaction. Journal of Organic Chemistry, 2021, 86, 4045-4052.	3.2	3
10	lonic Liquids–Cobalt(II) Thermochromic Complexes: How the Structure Tunability Affects "Self-Contained―Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 4064-4075.	6.7	7
11	Catalysis in Supramolecular Systems: the Case of Gel Phases. European Journal of Organic Chemistry, 2021, 2021, 3148-3169.	2.4	26
12	lonic liquids: "normal―solvents or nanostructured fluids?. Organic and Biomolecular Chemistry, 2021, 19, 2076-2095.	2.8	26
13	Boosting the methanolysis of polycarbonate by the synergy between ultrasound irradiation and task specific ionic liquids. Green Chemistry, 2021, 23, 9957-9967.	9.0	10
14	Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization. ACS Sustainable Chemistry and Engineering, 2021, 9, 15157-15165.	6.7	32
15	Improvement of oxidation resistance of polymer-based nanocomposites through sonication of carbonaceous nanoparticles. Ultrasonics Sonochemistry, 2020, 61, 104807.	8.2	8
16	When Functionalization Becomes Useful: Ionic Liquids with a "Sweet―Appended Moiety Demonstrate Drastically Reduced Toxicological Effects. ACS Sustainable Chemistry and Engineering, 2020, 8, 926-938.	6.7	24
17	Naphthalimide Imidazolium-Based Supramolecular Hydrogels as Bioimaging and Theranostic Soft Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48442-48457.	8.0	24
18	WO3 and Ionic Liquids: A Synergic Pair for Pollutant Gas Sensing and Desulfurization. Metals, 2020, 10, 475.	2.3	8

#	Article	IF	Citations
19	A Joint Action of Deep Eutectic Solvents and Ultrasound to Promote Diels–Alder Reaction in a Sustainable Way. ACS Sustainable Chemistry and Engineering, 2020, 8, 4889-4899.	6.7	13
20	Natural Compounds as Sustainable Additives for Biopolymers. Polymers, 2020, 12, 732.	4.5	28
21	Chemo-enzymatic Conversion of Glucose in 5-Hydroxymethylfurfural: The Joint Effect of Ionic Liquids and Ultrasound. ACS Sustainable Chemistry and Engineering, 2020, 8, 11204-11214.	6.7	16
22	Environmentally Friendly Eutectogels Comprising <scp>lâ€a</scp> mino Acids and Deep Eutectic Solvents: Efficient Materials for Wastewater Treatment. ChemPlusChem, 2020, 85, 301-311.	2.8	38
23	Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water. Molecules, 2019, 24, 2788.	3.8	10
24	Anti-/Pro-Oxidant Behavior of Naturally Occurring Molecules in Polymers and Biopolymers: A Brief Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 12656-12670.	6.7	48
25	Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 13359-13368.	6.7	42
26	lonic liquid gels and antioxidant carbon nanotubes: Hybrid soft materials with improved radical scavenging activity. Journal of Colloid and Interface Science, 2019, 556, 628-639.	9.4	10
27	Ionic Liquid Gels: Supramolecular Reaction Media for the Alcoholysis of Anhydrides. Journal of Organic Chemistry, 2019, 84, 6356-6365.	3.2	18
28	Carbohydrate-supramolecular gels: Adsorbents for chromium(VI) removal from wastewater. Journal of Colloid and Interface Science, 2019, 548, 184-196.	9.4	45
29	Task-Specific Organic Salts and Ionic Liquids Binary Mixtures: A Combination to Obtain 5-Hydroxymethylfurfural From Carbohydrates. Frontiers in Chemistry, 2019, 7, 134.	3.6	25
30	Cathodic Behaviour of Dicationic Imidazolium Bromides: The Role of the Spacer. ChemElectroChem, 2019, 6, 4275-4283.	3.4	19
31	A magnetic self-contained thermochromic system with convenient temperature range. Green Chemistry, 2019, 21, 1412-1416.	9.0	19
32	lonic Liquid Binary Mixtures, Zeolites, and Ultrasound Irradiation: A Combination to Promote Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 5818-5826.	6.7	45
33	Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery. ACS Medicinal Chemistry Letters, 2019, 10, 419-424.	2.8	39
34	Ionic liquids gels: Soft materials for environmental remediation. Journal of Colloid and Interface Science, 2018, 517, 182-193.	9.4	68
35	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	14.6	77
36	Supramolecular Eutecto Gels: Fully Natural Soft Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 12598-12602.	6.7	34

#	Article	IF	CITATIONS
37	Self-Sustaining Supramolecular Ionic Liquid Gels for Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 12453-12462.	6.7	58
38	"Sweet―ionic liquid gels: materials for sweetening of fuels. Green Chemistry, 2018, 20, 4260-4276.	9.0	44
39	The effects of structural changes on the anti-microbial and anti-proliferative activities of diimidazolium salts. New Journal of Chemistry, 2017, 41, 3574-3585.	2.8	26
40	Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin. Journal of Materials Chemistry B, 2017, 5, 3217-3229.	5.8	53
41	The anion impact on the self-assembly of naphthalene diimide diimidazolium salts. New Journal of Chemistry, 2017, 41, 13889-13901.	2.8	9
42	Supramolecular complexes formed by dimethoxypillar[5]arenes and imidazolium salts: a joint experimental and computational investigation. New Journal of Chemistry, 2017, 41, 12490-12505.	2.8	4
43	Supramolecular Hydro―and Ionogels: A Study of Their Properties and Antibacterial Activity. Chemistry - A European Journal, 2017, 23, 16297-16311.	3.3	37
44	Insights into the anion effect on the self assembly of perylene bisimide diimidazolium salts. Dyes and Pigments, 2017, 146, 54-65.	3.7	7
45	Nâ€Heterocyclic Carbenes and Parent Cations: Acidity, Nucleophilicity, Stability, and Hydrogen Bonding—Electrochemical Study and Abâ€Initio Calculations. ChemElectroChem, 2016, 3, 1133-1141.	3.4	24
46	Self-assembly of fluorescent diimidazolium salts: tailor properties of the aggregates changing alkyl chain features. RSC Advances, 2016, 6, 59502-59512.	3.6	17
47	Polarity study of ionic liquids with the solvatochromic dye Nile Red: a QSPR approach using in silico VolSurf+ descriptors. Tetrahedron, 2016, 72, 3282-3287.	1.9	7
48	Insights into the Formation and Structures of Molecular Gels by Diimidazolium Salt Gelators in Ionic Liquids or "Normal―Solvents. Chemistry - A European Journal, 2016, 22, 11269-11282.	3.3	36
49	Tunable radical scavenging activity of carbon nanotubes through sonication. Carbon, 2016, 107, 240-247.	10.3	18
50	Ionic liquid binary mixtures: how different factors contribute to determine their effect on the reactivity. RSC Advances, 2016, 6, 90165-90171.	3.6	18
51	Azolium and acetate ions in DMF: Formation of free N-heterocyclic carbene. A voltammetric analysis. Electrochemistry Communications, 2016, 67, 55-58.	4.7	6
52	Functionalised diimidazolium salts: the anion effect on the catalytic ability. RSC Advances, 2016, 6, 58477-58484.	3.6	20
53	Aggregation Processes of Perylene Bisimide Diimidazolium Salts. Chemistry - A European Journal, 2015, 21, 14780-14790.	3.3	26
54	Organic salts and aromatic substrates in two-component gel phase formation: the study of properties and release processes. Soft Matter, 2015, 11, 6652-6662.	2.7	8

#	Article	IF	CITATIONS
55	The ionic liquid effect on the Boulton–Katritzky reaction: a comparison between substrates of different structure. Tetrahedron, 2015, 71, 7361-7366.	1.9	13
56	Ï€-Conjugated diimidazolium salts: rigid structure to obtain organized materials. Physical Chemistry Chemical Physics, 2015, 17, 26903-26917.	2.8	6
57	Stability and organocatalytic efficiency of N-heterocyclic carbenes electrogenerated in organic solvents from imidazolium ionic liquids. Electrochimica Acta, 2015, 153, 122-129.	5.2	28
58	Binding abilities of new cyclodextrin–cucurbituril supramolecular hosts. Supramolecular Chemistry, 2015, 27, 233-243.	1.2	4
59	The ultrasounds–ionic liquids synergy on the copper catalyzed azide–alkyne cycloaddition between phenylacetylene and 4-azidoquinoline. Ultrasonics Sonochemistry, 2015, 23, 317-323.	8.2	19
60	Di―and Tricationic Organic Salts: An Overview of Their Properties and Applications. European Journal of Organic Chemistry, 2014, 2014, 4201-4223.	2.4	60
61	Task Specific Dicationic Ionic Liquids: Recyclable Reaction Media for the Mononuclear Rearrangement of Heterocycles. Journal of Organic Chemistry, 2014, 79, 8678-8683.	3.2	27
62	Dicationic organic salts: gelators for ionic liquids. Soft Matter, 2014, 10, 9281-9292.	2.7	37
63	Ionic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural. Applied Catalysis A: General, 2014, 482, 287-293.	4.3	48
64	Twoâ€Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. European Journal of Organic Chemistry, 2014, 2014, 1013-1024.	2.4	24
65	A multivariate insight into ionic liquids toxicities. RSC Advances, 2014, 4, 23985-24000.	3.6	22
66	Solution and thermal behaviour of novel dicationic imidazolium ionic liquids. Organic and Biomolecular Chemistry, 2013, 11, 5836.	2.8	41
67	Molecular "Pincer―from a Diimidazolium Salt: A Study of Binding Ability. Journal of Organic Chemistry, 2013, 78, 10203-10208.	3.2	16
68	The Gelling Ability of Some Diimidazolium Salts: Effect of Isomeric Substitution of the Cation and Anion. ChemPlusChem, 2013, 78, 331-342.	2.8	27
69	Breakthrough in the α-Perchlorination of Acyl Chlorides. Synthesis, 2012, 2012, 605-609.	2.3	3
70	Geminal Imidazolium Salts: A New Class of Gelators. Langmuir, 2012, 28, 10849-10859.	3.5	42
71	Binary Mixtures of Ionic Liquids: A Joint Approach to Investigate their Properties and Catalytic Ability. ChemPhysChem, 2012, 13, 1877-1884.	2.1	43
72	Synthesis and characterization of new polyamino-cyclodextrin materials. Carbohydrate Research, 2012, 347, 32-39.	2.3	15

#	Article	IF	CITATIONS
73	Synthesis of aryl azides: A probe reaction to study the synergetic action of ultrasounds and ionic liquids. Ultrasonics Sonochemistry, 2012, 19, 136-142.	8.2	26
74	Acid- and Base-Catalysis in the Mononuclear Rearrangement of Some (<i>Z</i>)-Arylhydrazones of 5-Amino-3-benzoyl-1,2,4-oxadiazole in Toluene: Effect of Substituents on the Course of Reaction. Journal of Organic Chemistry, 2011, 76, 2672-2679.	3.2	15
75	Microwave-assisted synthesis of novel cyclodextrin–cucurbituril complexes. Supramolecular Chemistry, 2011, 23, 819-828.	1.2	15
76	Binding properties of heptakis-(2,6-di-O-methyl)-l^2-cyclodextrin and mono-(3,6-anhydro)-l^2-cyclodextrin: a polarimetric study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 121-127.	1.6	9
77	A deep insight into the mechanism of the acidâ€catalyzed rearrangement of the <i>Z</i> â€phenylhydrazone of 5â€aminoâ€3â€benzoylâ€1,2,4â€oxadiazole in a nonâ€polar solvent. Journal of Physical Organic Chemistry, 2024, 185-192.	1119	6
78	The Effect of the Cation Ï€â€Surface Area on the 3D Organization and Catalytic Ability of Imidazoliumâ€Based Ionic Liquids. European Journal of Organic Chemistry, 2011, 2011, 5681-5689.	2.4	39
79	On the use of multi-parameter free energy relationships: the rearrangement of (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole into (2-aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas. Tetrahedron, 2010, 66, 5442-5450.	1.9	18
80	Apolar versus Polar Solvents: A Comparison of the Strength of Some Organic Acids against Different Bases in Toluene and in Water. Journal of Physical Chemistry A, 2010, 114, 10969-10974.	2.5	3
81	Electronic and Steric Effects: How Do They Work in Ionic Liquids? The Case of Benzoic Acid Dissociation. Journal of Organic Chemistry, 2010, 75, 4828-4834.	3.2	16
82	Aryl Azides Formation Under Mild Conditions: A Kinetic Study in Some Ionic Liquid Solutions. Journal of Organic Chemistry, 2010, 75, 767-771.	3.2	39
83	A Study of the Influence of Ionic Liquids Properties on the Kemp Elimination Reaction. Chemistry - A European Journal, 2009, 15, 7896-7902.	3.3	36
84	Geminal Ionic Liquids: A Combined Approach to Investigate Their Threeâ€Dimensional Organisation. Chemistry - A European Journal, 2009, 15, 13059-13068.	3.3	27
85	Binding properties of mono-(6-deoxy-6-amino)- \hat{l}^2 -cyclodextrin towards p-nitroaniline derivatives: a polarimetric study. Tetrahedron, 2009, 65, 10413-10417.	1.9	16
86	Binding equilibria between β-cyclodextrin and p-nitro-aniline derivatives: the first systematic study in mixed water–methanol solvent systems. Tetrahedron, 2009, 65, 2037-2042.	1.9	26
87	Determination of Basic Strength of Aliphatic Amines through Ion Pair Formation in Some Ionic Liquid Solutions. Journal of Organic Chemistry, 2009, 74, 6224-6230.	3.2	33
88	p-Nitrophenolate: A Probe for Determining Acid Strength in Ionic Liquids. Journal of Organic Chemistry, 2009, 74, 1952-1956.	3.2	31
89	New examples of specific-base catalysis in mononuclear rearrangements of heterocycles found via a designed modification of the side-chain structure. Arkivoc, 2009, 2009, 125-144.	0.5	2
90	The effect of some amines and alcohols on the organized structure of [bmim][BF4] investigated by 1H NMR spectroscopy. Arkivoc, 2009, 2009, 30-46.	0.5	0

#	Article	IF	Citations
91	Substituent effects on the mechanism changeover in a multi-pathway reaction: a model for the behavior of biological systems?. Arkivoc, 2009, 2009, 15-29.	0.5	O
92	Isomerization and rearrangement of (<i>E</i>)â€and (<i>Z</i>)â€phenylhydrazones of 3â€benzoylâ€5â€phenylâ€1,2,4â€oxadiazole: evidence for a â€new' type of acidâ€catalysis by copper(II) sa mononuclear rearrangement of heterocycles. Journal of Physical Organic Chemistry, 2008, 21, 306-314.	lts1i19	9
93	On the characterization of some [bmim][X]/co-solvent binary mixtures: a multidisciplinary approach by using kinetic, spectrophotometric and conductometric investigations. Tetrahedron, 2008, 64, 672-680.	1.9	56
94	Mononuclear rearrangement of heterocycles in ionic liquids catalyzed by copper(II) salts. Tetrahedron, 2008, 64, 11209-11217.	1.9	18
95	Polystyrene-supported proline as recyclable catalyst in the Baylis–Hillman reaction of arylaldehydes and methyl or ethyl vinyl ketone. Catalysis Communications, 2008, 9, 1477-1481.	3.3	26
96	Ionic Liquids/[bmim][N3] Mixtures: Promising Media for the Synthesis of Aryl Azides by SNAr. Journal of Organic Chemistry, 2008, 73, 6224-6228.	3.2	71
97	Kemp Elimination: A Probe Reaction To Study Ionic Liquids Properties. Journal of Organic Chemistry, 2008, 73, 3397-3403.	3.2	35
98	Host–guest interactions involving cyclodextrins: useful complementary insights achieved by polarimetry. Tetrahedron, 2007, 63, 9163-9171.	1.9	28
99	Amine basicity: measurements of ion pair stability in ionic liquidÂmedia. Tetrahedron, 2007, 63, 11681-11685.	1.9	31
100	Room Temperature Ionic Liquids Structure and its Effect on the Mononuclear Rearrangement of Heterocycles:Â An Approach Using Thermodynamic Parameters. Journal of Organic Chemistry, 2006, 71, 9637-9642.	3.2	58
101	Study of Aromatic Nucleophilic Substitution with Amines on Nitrothiophenes in Room-Temperature Ionic Liquids:  Are the Different Effects on the Behavior of para-Like and ortho-Like Isomers on Going from Conventional Solvents to Room-Temperature Ionic Liquids Related to Solvation Effects?. Journal of Organic Chemistry, 2006, 71, 5144-5150.	3.2	88
102	On the Rearrangement in Dioxane/Water of (Z)-Arylhydrazones of 5-Amino-3-benzoyl-1,2,4-oxadiazole into (2-Aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas:Â Substituent Effects on the Different Reaction Pathways. Journal of Organic Chemistry, 2006, 71, 5616-5624.	3.2	38
103	Effect of ionic liquid organizing ability and amine structure on the rate and mechanism of base induced elimination of $1,1,1$ -tribromo- $2,2$ -bis(phenyl-substituted)ethanes. Tetrahedron, 2006, 62, 1690-1698.	1.9	51
104	Chiral recognition of protected amino acids by means of fluorescent binary complex pyrene/heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin. Tetrahedron, 2006, 62, 4323-4330.	1.9	17
105	Lipase-catalyzed resolution of β-hydroxy selenides. Tetrahedron: Asymmetry, 2006, 17, 2713-2721.	1.8	13
106	Cyclodextrin-[60]fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Letters, 2006, 47, 8105-8108.	1.4	17
107	Polarimetry as a useful tool for the determination of binding constants between cyclodextrins and organic guest molecules. Tetrahedron Letters, 2006, 47, 9099-9102.	1.4	19
108	Supported Ionic Liquids. New Recyclable Materials for the L-Proline-Catalyzed Aldol Reaction. Advanced Synthesis and Catalysis, 2006, 348, 82-92.	4.3	143

#	Article	IF	CITATIONS
109	On the application of the extended Fujita–Nishioka equation to polysubstituted systems. A kinetic study of the rearrangement of several poly-substituted Z-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl-1,2,3-triazoles in dioxane/water. Tetrahedron, 2005, 61, 167-178.	1.9	22
110	A spectrofluorimetric study of binary fluorophore–cyclodextrin complexes used as chiral selectors. Tetrahedron, 2005, 61, 4577-4583.	1.9	15
111	NMR Study of the (Z)-Phenylhydrazones of 5-Alkyl- and 5-Aryl-3-benzoyl-1,2,4-oxadiazoles: Support for the Interpretation of Kinetic Results on the Rearrangement of 1,2,4-Oxadiazoles to 1,2,3-Triazoles. European Journal of Organic Chemistry, 2005, 2005, 3980-3986.	2.4	3
112	Can the Absence of Solvation of Neutral Reagents by Ionic Liquids Be Responsible for the High Reactivity in Base-Assisted Intramolecular Nucleophilic Substitutions in These Solvents?. Journal of Organic Chemistry, 2005, 70, 2828-2831.	3.2	53
113	Supported Ionic Liquid Asymmetric Catalysis. A New Method for Chiral Catalysts Recycling. The Case of Proline-Catalyzed Aldol Reaction ChemInform, 2004, 35, no.	0.0	2
114	Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Letters, 2004, 45, 6113-6116.	1.4	136
115	Stability and stoichiometry of some binary fluorophore–cyclodextrin complexes. Tetrahedron, 2004, 60, 5309-5314.	1.9	11
116	Thermodynamics of binding between \hat{l}_{\pm} - and \hat{l}^2 -cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy \hat{a} entropy compensation effect. Tetrahedron, 2004, 60, 9099-9111.	1.9	45
117	On the Dichotomic Behavior of the Z-2,4-Dinitrophenylhydrazone of 5-Amino-3-benzoyl-1,2,4-oxadiazole with Acids in Toluene and in Dioxane/Water:  Rearrangement versus Hydrolysis. Journal of Organic Chemistry, 2004, 69, 8718-8722.	3.2	22
118	Studies on the Stereoselective Selenolactonization, Hydroxy and Methoxy Selenenylation of \hat{l}_{\pm} - and \hat{l}_{\pm} -Hydroxy Acids and Esters. Synthesis of \hat{l}_{\pm} - and \hat{l}_{\pm} -Lactones ChemInform, 2003, 34, no.	0.0	0
119	Studies on the stereoselective selenolactonization, hydroxy and methoxy selenenylation of \hat{l} ² -hydroxy acids and esters. Synthesis of \hat{l} ² -and \hat{l} ³ -lactones. Tetrahedron, 2003, 59, 2241-2251.	1.9	47
120	Spectrophotometric study on the thermodynamics of binding of \hat{l}_{\pm} - and \hat{l}^2 -cyclodextrin towards some p-nitrobenzene derivatives Electronic supplementary information (ESI) available: Values of inclusion constants at different temperatures. See http://www.rsc.org/suppdata/ob/b3/b300330b/. Organic and Biomolecular Chemistry, 2003, 1, 1584-1590.	2.8	39
121	A kinetic study of the basic hydrolysis of 2-phenylethyl nitrite in the presence of borate buffer and \hat{l}^2 -cyclodextrin. Arkivoc, 2003, 2002, 187-197.	0.5	O
122	The binary pyrene/heptakis-(6-amino-6-deoxy)- \hat{l}^2 -cyclodextrin complex: a suitable chiral discriminator. Spectrofluorimetric study of the effect of some \hat{l} ±-amino acids and esters on the stability of the binary complex. Tetrahedron: Asymmetry, 2002, 13, 1755-1760.	1.8	13
123	Spectrophotometric determination of binding constants between some aminocyclodextrins and nitrobenzene derivatives at various pH values. Tetrahedron, 2002, 58, 6039-6045.	1.9	23
124	Protonation equilibria of some ortho-substituted and annelated aryl and thiophen-2-yl and -3-yl ketones. Perkin Transactions II RSC, 2001, , 2043-2046.	1.1	1
125	Spectrophotometric determinations of binding constants between cyclodextrins and aromatic nitrogen substrates at various pH values. Tetrahedron, 2001, 57, 6823-6827.	1.9	19
126	A joint experimental and ab initio study on the reactivity of several hydroxy selenides. Stereoselective synthesis of cis-disubstituted tetrahydrofurans via seleniranium ions. Tetrahedron, 2001, 57, 6815-6822.	1.9	18