Arthur D Richmond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodynamical Coupling of the Geospace System During Solar Flares. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	14
2	Magnetosphereâ€Ionosphere Coupling via Prescribed Fieldâ€Aligned Current Simulated by the TIEGCM. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	8
3	Mid‣atitude Thermosphere″onosphere Na (TINa) Layers Observed With High‣ensitivity Na Doppler Lidar Over Boulder (40.13°N, 105.24°W). Geophysical Research Letters, 2021, 48, e2021GL093729.	1.5	11
4	Impacts of Binning Methods on High‣atitude Electrodynamic Forcing: Static Versus Boundaryâ€Oriented Binning Methods. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027270.	0.8	7
5	Globalâ€Scale Observations and Modeling of Farâ€Ultraviolet Airglow During Twilight. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027645.	0.8	16
6	Thermosphereâ€ionosphere Model Development: A Personal Perspective. Journal of Geophysical Research: Space Physics, 2019, 124, 9154-9165.	0.8	1
7	Impacts of Multiscale FACs on the Ionosphereâ€Thermosphere System: GITM Simulation. Journal of Geophysical Research: Space Physics, 2019, 124, 3532-3542.	0.8	8
8	Analysis of the Steady State Available Energy Budget in the High‣atitude Lower Thermosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 2283-2297.	0.8	1
9	Effects of High‣atitude Forcing Uncertainty on the Low‣atitude and Midlatitude Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 862-882.	0.8	14
10	Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCMâ€X 2.0). Journal of Advances in Modeling Earth Systems, 2018, 10, 381-402.	1.3	213
11	Smallâ€Scale and Mesoscale Variabilities in the Electric Field and Particle Precipitation and Their Impacts on Joule Heating. Journal of Geophysical Research: Space Physics, 2018, 123, 9862-9872.	0.8	23
12	A Comparison of Modelâ€Based Ionospheric and Ocean Tidal Magnetic Signals With Observatory Data. Geophysical Research Letters, 2018, 45, 7257-7267.	1.5	17
13	The F \$F\$ -Region Gravity and Pressure Gradient Current Systems: A Review. Space Sciences Series of ISSI, 2018, , 459-477.	0.0	2
14	Magnetic Coordinate Systems. Space Sciences Series of ISSI, 2018, , 29-61.	0.0	3
15	Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects. Space Sciences Series of ISSI, 2018, , 415-437.	0.0	0
16	F \$F\$ -Region Dynamo Simulations at Low and Mid-Latitude. Space Sciences Series of ISSI, 2018, , 479-501.	0.0	0
17	An application of principal component analysis to the interpretation of ionospheric current systems. Journal of Geophysical Research: Space Physics, 2017, 122, 5687-5708.	0.8	15
18	Relative contributions of momentum forcing and heating to highâ€latitude lower thermospheric winds. Journal of Geophysical Research: Space Physics, 2017, 122, 1031-1041.	0.8	6

#	Article	IF	CITATIONS
19	Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects. Space Science Reviews, 2017, 206, 407-429.	3.7	43
20	The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Science Reviews, 2017, 212, 383-408.	3.7	105
21	Editorial: Topical Volume on Earth's Magnetic Field—Understanding Geomagnetic Sources from the Earth's Interior and Its Environment. Space Science Reviews, 2017, 206, 1-3.	3.7	4
22	The \$F\$-Region Gravity and Pressure Gradient Current Systems: A Review. Space Science Reviews, 2017, 206, 451-469.	3.7	23
23	Magnetic Coordinate Systems. Space Science Reviews, 2017, 206, 27-59.	3.7	178
24	\$F\$-Region Dynamo Simulations at Low and Mid-Latitude. Space Science Reviews, 2017, 206, 471-493.	3.7	39
25	Examining the Magnetic Signal Due To Gravity and Plasma Pressure Gradient Current With the TIEâ€GCM. Journal of Geophysical Research: Space Physics, 2017, 122, 12,486.	0.8	13
26	Winter Temperature and Tidal Structures from 2011 to 2014 at McMurdo Station: Observations from Fe Boltzmann Temperature and Rayleigh Lidar. EPJ Web of Conferences, 2016, 119, 12003.	0.1	1
27	Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 8077-8088.	0.8	39
28	Highâ€latitude energy input and its impact on the thermosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 7108-7124.	0.8	64
29	Ionâ€neutral coupling effects on lowâ€latitude thermospheric evening winds. Journal of Geophysical Research: Space Physics, 2016, 121, 4638-4646.	0.8	6
30	Mapping highâ€latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research: Space Physics, 2015, 120, 5854-5870.	0.8	38
31	Dominant modes of variability in largeâ€scale Birkeland currents. Journal of Geophysical Research: Space Physics, 2015, 120, 6722-6735.	0.8	22
32	Inverse procedure for highâ€latitude ionospheric electrodynamics: Analysis of satelliteâ€borne magnetometer data. Journal of Geophysical Research: Space Physics, 2015, 120, 5241-5251.	0.8	22
33	DYNAMICAL METEOROLOGY Atmospheric Tides. , 2015, , 287-297.		15
34	Lidar and CTIPe model studies of the fast amplitude growth with altitude of the diurnal temperature "tides―in the Antarctic winter lower thermosphere and dependence on geomagnetic activity. Geophysical Research Letters, 2015, 42, 697-704.	1.5	8
35	Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow. Journal of Geophysical Research: Space Physics, 2015, 120, 2133-2147.	0.8	23
36	Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. Journal of Geophysical Research: Space Physics, 2015, 120, 2118-2132.	0.8	45

#	Article	IF	CITATIONS
37	Ground magnetic effects of the equatorial electrojet simulated by the TIEâ€GCM driven by TIMED satellite data. Journal of Geophysical Research: Space Physics, 2014, 119, 3150-3161.	0.8	32
38	TIMEâ€GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming. Journal of Geophysical Research: Space Physics, 2014, 119, 1287-1305.	0.8	30
39	Dependence of the highâ€latitude lower thermospheric wind vertical vorticity and horizontal divergence on the interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 2014, 119, 1356-1368.	0.8	17
40	On the dayâ€toâ€day variation of the equatorial electrojet during quiet periods. Journal of Geophysical Research: Space Physics, 2014, 119, 6966-6980.	0.8	44
41	Wavelength dependence of solar irradiance enhancement during X-class flares and its influence on the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 115-116, 87-94.	0.6	7
42	Comparison of magnetic perturbation data from LEO satellite constellations: Statistics of DMSP and AMPERE. Space Weather, 2014, 12, 2-23.	1.3	33
43	SuperDARN assimilative mapping. Journal of Geophysical Research: Space Physics, 2013, 118, 7954-7962.	0.8	33
44	A theory of ionospheric response to upwardâ€propagating tides: Electrodynamic effects and tidal mixing effects. Journal of Geophysical Research: Space Physics, 2013, 118, 5891-5905.	0.8	113
45	Attribution of ionospheric vertical plasma drift perturbations to largeâ€scale waves and the dependence on solar activity. Journal of Geophysical Research: Space Physics, 2013, 118, 2452-2465.	0.8	73
46	Changes in the Earth's magnetic field over the past century: Effects on the ionosphereâ€ŧhermosphere system and solar quiet (Sq) magnetic variation. Journal of Geophysical Research: Space Physics, 2013, 118, 849-858.	0.8	47
47	Wavenumber broadening of the quasi 2 day planetary wave in the ionosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3515-3526.	0.8	36
48	Mesoscale and largeâ€scale variability in highâ€latitude ionospheric convection: Dominant modes and spatial/temporal coherence. Journal of Geophysical Research: Space Physics, 2013, 118, 7895-7904.	0.8	25
49	Sq current system during stratospheric sudden warming events in 2006 and 2009. Journal of Geophysical Research, 2012, 117, .	3.3	21
50	Assimilation of FORMOSATâ€3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. Journal of Geophysical Research, 2012, 117, .	3.3	74
51	Stratospheric warmings and the geomagnetic lunar tide: 1958–2007. Journal of Geophysical Research, 2012, 117, .	3.3	79
52	How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphereâ€ionosphereâ€thermosphere system. Journal of Geophysical Research, 2012, 117, .	3.3	40
53	Height distribution of Joule heating and its influence on the thermosphere. Journal of Geophysical Research, 2012, 117, .	3.3	48
54	Simulations of the equatorial thermosphere anomaly: Fieldâ€aligned ion drag effect. Journal of Geophysical Research, 2012, 117, .	3.3	19

#	Article	IF	CITATIONS
55	Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Journal of Geophysical Research, 2012, 117, .	3.3	24
56	The dependence of the coupled magnetosphereâ€ionosphereâ€thermosphere system on the Earth's magnetic dipole moment. Journal of Geophysical Research, 2012, 117, .	3.3	41
57	Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE. Journal of Geophysical Research, 2012, 117, .	3.3	25
58	Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low″atitude ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	98
59	Sources of lowâ€ ł atitude ionospheric E Â×Â B drifts and their variability. Journal of Geophysical Research, 2012, 117, .	3.3	68
60	Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	44
61	Quasiâ€twoâ€day wave coupling of the mesosphere and lower thermosphereâ€ionosphere in the TIMEâ€GCM: Twoâ€day oscillations in the ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	38
62	On the formation of a fast thermospheric zonal wind at the magnetic dip equator. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	13
63	The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25% reduction in the dipole moment of the Earth's magnetic field. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	38
64	The ionospheric gravity and diamagnetic current systems. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
65	Electrodynamics of Ionosphere–Thermosphere Coupling. , 2011, , 191-201.		10
66	Modeling the Storm Time Electrodynamics. , 2011, , 455-464.		14
67	Longitudinal variations in the <i>F</i> region ionosphere and the topside ionosphere-plasmasphere: Observations and model simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
68	Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	64
69	Seasonal and longitudinal variations of the solar quiet (<i>Sq</i>) current system during solar minimum determined by CHAMP satellite magnetic field observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	46
70	Thermosphere extension of the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2010, 115, .	3.3	144
71	lonospheric variability due to planetary waves and tides for solar minimum conditions. Journal of Geophysical Research, 2010, 115, .	3.3	207
72	A computationally compact representation of Magneticâ€Apex and Quasiâ€Dipole coordinates with smooth base vectors. Journal of Geophysical Research, 2010, 115, .	3.3	151

#	Article	IF	CITATIONS
73	Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: Comparison with the observations. Journal of Geophysical Research, 2010, 115, .	3.3	19
74	On the ionospheric application of Poynting's theorem. Journal of Geophysical Research, 2010, 115, .	3.3	45
75	Correction to "Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: Comparison with the observations― Journal of Geophysical Research, 2010, 115, .	3.3	1
76	Sources of the High-Latitude Thermospheric Neutral Mass Density Variations. Journal of Astronomy and Space Sciences, 2010, 27, 329-335.	0.3	2
77	Contributions of Heating and Forcing to the High-Latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field. Journal of Astronomy and Space Sciences, 2010, 27, 205-212.	0.3	1
78	Bayesian calibration of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM). Geoscientific Model Development, 2009, 2, 137-144.	1.3	11
79	Theoretical study of new plasma structures in the low″atitude ionosphere during a major magnetic storm. Journal of Geophysical Research, 2009, 114, .	3.3	32
80	Expert Knowledge and Multivariate Emulation: The Thermosphere–Ionosphere Electrodynamics General Circulation Model (TIE-GCM). Technometrics, 2009, 51, 414-424.	1.3	27
81	Neutral wind effect in producing a storm time ionospheric additional layer in the equatorial ionization anomaly region. Journal of Geophysical Research, 2009, 114, .	3.3	28
82	Causal link of the waveâ€4 structures in plasma density and vertical plasma drift in the lowâ€latitude ionosphere. Journal of Geophysical Research, 2009, 114, .	3.3	64
83	Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophysical Research Letters, 2009, 36, .	1.5	49
84	Dependence of the highâ€latitude thermospheric densities on the interplanetary magnetic field. Journal of Geophysical Research, 2009, 114, .	3.3	24
85	Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 2203-2211.	0.6	49
86	Modelling the effects of changes in the Earth's magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1512-1524.	0.6	66
87	Assessment of the nonâ€hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophysical Research Letters, 2008, 35, .	1.5	81
88	Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. Journal of Geophysical Research, 2008, 113, .	3.3	120
89	Analysis of thermospheric response to magnetospheric inputs. Journal of Geophysical Research, 2008, 113, .	3.3	25
90	A dayside ionospheric positive storm phase driven by neutral winds. Journal of Geophysical Research, 2008, 113, .	3.3	106

#	Article	IF	CITATIONS
91	Effects of high″atitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. Journal of Geophysical Research, 2008, 113, .	3.3	57
92	Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model. Geophysical Research Letters, 2008, 35, .	1.5	78
93	Behavior of the <i>F</i> ₂ peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data. Journal of Geophysical Research, 2008, 113, .	3.3	92
94	Wind dynamo effects on ground magnetic perturbations and vertical drifts. Journal of Geophysical Research, 2008, 113, .	3.3	35
95	Modeling seasonal and diurnal effects on ionospheric conductances, regionâ€2 currents, and plasma convection in the inner magnetosphere. Journal of Geophysical Research, 2007, 112, .	3.3	10
96	An analysis of the momentum forcing in the high-latitude lower thermosphere. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	46
97	Dependence of the high-latitude lower thermospheric momentum forcing on the interplanetary magnetic field. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	17
98	Connections between deep tropical clouds and the Earth's ionosphere. Geophysical Research Letters, 2007, 34, .	1.5	198
99	Simulation of equatorial electrojet magnetic effects with the thermosphereâ€ionosphereâ€electrodynamics general circulation model. Journal of Geophysical Research, 2007, 112, .	3.3	39
100	Modeling storm-time electrodynamics of the low-latitude ionosphere–thermosphere system: Can long lasting disturbance electric fields be accounted for?. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1182-1199.	0.6	70
101	Optimal interpolation analysis of high-latitude ionospheric electrodynamics using empirical orthogonal functions: Estimation of dominant modes of variability and temporal scales of large-scale electric fields. Journal of Geophysical Research, 2005, 110, .	3.3	45
102	Simulation study of the longitudinal variation of evening vertical ionospheric drifts at the magnetic equator during equinox. Journal of Geophysical Research, 2005, 110, .	3.3	45
103	Large-scale variations of the low-latitude ionosphere during the October-November 2003 superstorm: Observational results. Journal of Geophysical Research, 2005, 110, .	3.3	71
104	Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields. Journal of Geophysical Research, 2005, 110, .	3.3	100
105	Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophysical Research Letters, 2005, 32, .	1.5	190
106	Mean winds, tides, and quasi-2 day wave in the polar lower thermosphere observed in European Incoherent Scatter (EISCAT) 8 day run data in November 2003. Journal of Geophysical Research, 2005, 110, .	3.3	22
107	Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. Journal of Geophysical Research, 2005, 110, .	3.3	185
108	A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE. Journal of Astronomy and Space Sciences, 2005, 22, 147-174.	0.3	0

#	Article	IF	CITATIONS
109	High-latitude ionospheric electric field variability and electric potential derived from DE-2 plasma drift measurements: Dependence on IMF and dipole tilt. Journal of Geophysical Research, 2003, 108, SIA 1-1.	3.3	72
110	Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. Journal of Geophysical Research, 2003, 108, .	3.3	57
111	Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field. Journal of Geophysical Research, 2003, 108, .	3.3	95
112	Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. Journal of Geophysical Research, 2003, 108, .	3.3	179
113	Neutral wind influence on the electrodynamic coupling between the ionosphere and the magnetosphere. Journal of Geophysical Research, 2002, 107, SMP 2-1.	3.3	26
114	Modes of high-latitude electric field variability derived from DE-2 measurements: Empirical Orthogonal Function (EOF) analysis. Geophysical Research Letters, 2002, 29, 11-1.	1.5	56
115	Modeling the geomagnetic perturbations produced by ionospheric currents, above and below the ionosphere. Journal of Geodynamics, 2002, 33, 143-156.	0.7	8
116	Storm-time changes in the upper atmosphere at low latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 1383-1391.	0.6	196
117	Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 2001, 106, 117-125.	3.3	77
118	Comparison of the auroralEregion neutral winds derived with the European Incoherent Scatter radar and predicted by the National Center for Atmospheric Research Thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. Journal of Geophysical Research, 2001, 106, 24691-24700.	3.3	8
119	An investigation into the influence of tidal forcing onFregion equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. Journal of Geophysical Research, 2001, 106, 24733-24744.	3.3	165
120	An investigation of the influence of data and model inputs on assimilative mapping of ionospheric electrodynamics. Journal of Geophysical Research, 2001, 106, 417-433.	3.3	35
121	Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study. Journal of Geophysical Research, 2001, 106, 24493-24504.	3.3	81
122	Upper-atmospheric effects of magnetic storms: a brief tutorial. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1115-1127.	0.6	148
123	Ionospheric electrodynamics: A tutorial. Geophysical Monograph Series, 2000, , 131-146.	0.1	49
124	Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. Journal of Geophysical Research, 2000, 105, 22991-23003.	3.3	114
125	Electrodynamic coupling of high and low latitudes: Observations on May 27, 1993. Journal of Geophysical Research, 2000, 105, 22979-22989.	3.3	58
126	Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophysical Research Letters, 2000, 27, 1851-1854.	1.5	175

#	Article	IF	CITATIONS
127	Lunar tides in the Thermosphere-Ionosphere-Electrodynamics General Circulation Model. Journal of Geophysical Research, 1999, 104, 1-13.	3.3	21
128	Magnetic mirroring in an incident proton beam. Journal of Geophysical Research, 1999, 104, 4447-4455.	3.3	30
129	An ionospheric conductance model based on ground magnetic disturbance data. Journal of Geophysical Research, 1998, 103, 14769-14780.	3.3	66
130	The AMIE procedure: Prospects for space weather specification and prediction. Advances in Space Research, 1998, 22, 103-112.	1.2	23
131	Variations of total electron content during geomagnetic disturbances: A model/observation comparison. Geophysical Research Letters, 1998, 25, 253-256.	1.5	47
132	Longitudinal and interhemispheric variations of auroral ionospheric electrodynamics in a realistic geomagnetic field. Journal of Geophysical Research, 1998, 103, 4011-4021.	3.3	30
133	Correction to "Variations of total electron content during geomagnetic disturbances: A model/observation comparison― Geophysical Research Letters, 1998, 25, 3107-3107.	1.5	Ο
134	A magnetosphere-thermosphere-ionosphere electrodynamics general circulation model. Journal of Geophysical Research, 1998, 103, 17467-17477.	3.3	45
135	The ionosphere and upper atmosphere. , 1998, , 35-44.		7
136	Global Ionospheric Convection during Substorm Expansion. Astrophysics and Space Science Library, 1998, , 617-622.	1.0	5
137	How does the thermosphere and ionosphere react to a geomagnetic storm?. Geophysical Monograph Series, 1997, , 203-225.	0.1	113
138	Experiments with a lunar atmospheric tidal model. Journal of Geophysical Research, 1997, 102, 13465-13471.	3.3	79
139	Mapping of the ionospheric fieldâ€aligned currents to the equatorial magnetosphere. Journal of Geophysical Research, 1997, 102, 14467-14476.	3.3	15
140	Electrodynamic coupling effects in the thermosphere/ionosphere system. Advances in Space Research, 1997, 20, 1115-1124.	1.2	14
141	Space weather research prompts study of ionosphere and upper atmospheric electrodynamics. Eos, 1996, 77, 101.	0.1	8
142	Relationship of the ionospheric convection reversal to the hard auroral precipitation boundary. Journal of Geophysical Research, 1996, 101, 15423-15432.	3.3	9
143	Assimilative mapping of ionospheric electrodynamics in the thermosphere-ionosphere general circulation model comparisons with global ionospheric and thermospheric observations during the GEM/SUNDIAL period of March 28-29, 1992. Journal of Geophysical Research, 1996, 101, 26681 <u>-</u> 26696.	3.3	32
144	Ionospheric drift similarities at magnetic conjugate and nonconjugate locations. Journal of Geophysical Research, 1996, 101, 15773-15782.	3.3	14

#	Article	IF	CITATIONS
145	Modeling equatorial ionospheric electric fields. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1103-1115.	0.9	51
146	Ionospheric Electrodynamics Using Magnetic Apex Coordinates Journal of Geomagnetism and Geoelectricity, 1995, 47, 191-212.	0.8	577
147	Regional estimation of electric fields and currents in the polar ionosphere. Geophysical Research Letters, 1995, 22, 283-286.	1.5	11
148	Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current. Journal of Geophysical Research, 1995, 100, 19643.	3.3	164
149	A storm time assimilative mapping of ionospheric electrodynamics analysis for the severe geomagnetic storm of November 8–9, 1991. Journal of Geophysical Research, 1995, 100, 19329.	3.3	20
150	Mapping ionospheric convection response to IMF By negative and Bz positive conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 223-235.	0.9	8
151	Investigation of seasonal and interannual variations of internal gravity wave intensity in the thermosphere over Saint Santin. Journal of Geophysical Research, 1994, 99, 6297.	3.3	14
152	Interhemispheric asymmetry of the high-latitude ionospheric convection pattern. Journal of Geophysical Research, 1994, 99, 6491.	3.3	105
153	Ground-based studies of ionospheric convection associated with substorm expansion. Journal of Geophysical Research, 1994, 99, 19451.	3.3	39
154	Lowâ€latitude plasma drifts from a simulation of the global atmospheric dynamo. Journal of Geophysical Research, 1993, 98, 6039-6046.	3.3	75
155	lonospheric convection response to slow, strong variations in a northward interplanetary magnetic field: A case study for January 14, 1988. Journal of Geophysical Research, 1993, 98, 19273-19292.	3.3	75
156	Modeling the ion loss effect on the generation of region 2 fieldâ€eligned currents via equivalent magnetospheric conductances. Journal of Geophysical Research, 1993, 98, 15467-15476.	3.3	4
157	Theoretical effects of geomagnetic activity on thermospheric tides. Journal of Geophysical Research, 1993, 98, 15599-15612.	3.3	25
158	Wave–Mean Flow Interaction in the Storm-Time Thermosphere: A Two-Dimensional Model Simulation. Journals of the Atmospheric Sciences, 1992, 49, 660-680.	0.6	9
159	A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 1992, 19, 601-604.	1.5	865
160	Auroral effects on midlatitude semidiurnal tides. Geophysical Research Letters, 1991, 18, 412-415.	1.5	11
161	Ionospheric convection response to changing IMF direction. Geophysical Research Letters, 1991, 18, 721-724.	1.5	67
162	Reply to the Comment by Lockwood and Cowley on "Ionospheric convection response to changing IMF direction― Geophysical Research Letters, 1991, 18, 2175-2176.	1.5	2

#	Article	IF	CITATIONS
163	Radar interferometry technique: Threeâ€dimensional wind measurement theory. Radio Science, 1991, 26, 1209-1218.	0.8	21
164	Radar interferometry technique and anisotropy of the echo power distribution: First results. Radio Science, 1991, 26, 1315-1326.	0.8	36
165	The Ionospheric Wind Dynamo. Journal of Geomagnetism and Geoelectricity, 1991, 43, 433-440.	0.8	3
166	Comparison of VHF Doppler beam swinging and spaced antenna observations with the MU radar: First results. Radio Science, 1990, 25, 629-640.	0.8	30
167	Global measures of ionospheric electrodynamic activity inferred from combined incoherent scatter radar and ground magnetometer observations. Journal of Geophysical Research, 1990, 95, 1061-1071.	3.3	65
168	Solar cycle variations in <i>F</i> region electrodynamic drifts at Arecibo. Journal of Geophysical Research, 1990, 95, 4303-4306.	3.3	16
169	Modeling the ionosphere wind dynamo: A review. Pure and Applied Geophysics, 1989, 131, 413-435.	0.8	82
170	Electrodynamic patterns for September 19, 1984. Journal of Geophysical Research, 1989, 94, 16913-16923.	3.3	37
171	Modeling the Ionosphere Wind Dynamo: A Review. , 1989, , 413-435.		2
172	Mapping electrodynamic features of the highâ€latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 1988, 93, 5741-5759.	3.3	568
173	Mapping electrodynamic features of the highâ€latitude ionosphere from localized observations: Combined incoherentâ€scatter radar and magnetometer measurements for January 18–19, 1984. Journal of Geophysical Research, 1988, 93, 5760-5776.	3.3	83
174	A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 1988, 15, 1325-1328.	1.5	652
175	Comment on "lonospheric convection associated with discrete levels of particle precipitation― Geophysical Research Letters, 1987, 14, 158-159.	1.5	11
176	Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General Circulation Model. Journal of Geophysical Research, 1987, 92, 12365-12376.	3.3	117
177	Recent advances in studies of magnetosphere-ionosphere coupling Journal of Geomagnetism and Geoelectricity, 1986, 38, 653-714.	0.8	12
178	Atmospheric Physics: Atmospheric Electrodynamics Science, 1985, 228, 572-573.	6.0	5
179	Interplanetary magnetic field control of high″atitude electric fields and currents determined from Greenland Magnetometer Data. Journal of Geophysical Research, 1985, 90, 1325-1338.	3.3	258
180	Estimation of ionospheric electric fields and currents from a regional magnetometer array. Journal of Geophysical Research, 1985, 90, 3525-3530.	3.3	22

#	Article	IF	CITATIONS
181	Estimation of electric fields and currents from ground-based magnetometer data. Geophysical Monograph Series, 1984, , 67-76.	0.1	8
182	lonospheric electrodynamics and irregularities: A review of contributions by U.S. scientists from 1979 to 1982. Reviews of Geophysics, 1983, 21, 234-241.	9.0	4
183	Thermospheric Dynamics and Electrodynamics. Astrophysics and Space Science Library, 1983, , 523-607.	1.0	24
184	Inâ€situ generated gravity waves as a possible seeding mechanism for equatorial spreadâ€F. Geophysical Research Letters, 1982, 9, 789-792.	1.5	26
185	Global distribution of ionospheric and fieldâ€aligned currents during substorms as determined from six IMS meridian chains of magnetometers: Initial results. Journal of Geophysical Research, 1982, 87, 8228-8240.	3.3	91
186	Ionospheric conductivity dependence of electric fields and currents estimated from ground magnetic observations. Journal of Geophysical Research, 1982, 87, 8331-8337.	3.3	57
187	Estimation of ionospheric electric fields, ionospheric currents, and fieldâ€aligned currents from ground magnetic records. Journal of Geophysical Research, 1981, 86, 801-813.	3.3	340
188	An empirical model of quietâ€day ionospheric electric fields at middle and low latitudes. Journal of Geophysical Research, 1980, 85, 4658-4664.	3.3	236
189	Ionospheric wind dynamo theory: A review Journal of Geomagnetism and Geoelectricity, 1979, 31, 287-310.	0.8	88
190	The quiet-time equatorial electrojet and counter-electrojet Journal of Geomagnetism and Geoelectricity, 1979, 31, 311-340.	0.8	74
191	Dynamic effects of aurora-generated gravity waves on the mid-latitude ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1979, 41, 841-852.	0.9	48
192	Largeâ€amplitude gravity wave energy production and dissipation in the thermosphere. Journal of Geophysical Research, 1979, 84, 1880-1890.	3.3	82
193	Magnetic Substorm Characteristics Described by Magnetic Potential Maps for 26 – 28 March 1976. Astrophysics and Space Science Library, 1979, , 269-286.	1.0	7
194	Ionospheric effects of the gravity wave launched by the September 18, 1974, sudden commencement. Journal of Geophysical Research, 1978, 83, 999-1009.	3.3	78
195	The nature of gravity wave ducting in the thermosphere. Journal of Geophysical Research, 1978, 83, 1385-1389.	3.3	41
196	Lowâ€latitude <i>E</i> region ionization by energetic ring current particles. Journal of Geophysical Research, 1978, 83, 2201-2204.	3.3	32
197	Gravity wave generation, propagation, and dissipation in the thermosphere. Journal of Geophysical Research, 1978, 83, 4131-4145.	3.3	241
198	Comparison of equatorial electrojet models. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 1119-1124.	0.9	78

#	Article	IF	CITATIONS
199	Ionospheric storm of 4–5 August 1972 in the Asia-Australia-Pacific sector. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 43-50.	0.9	6
200	Electric field in the ionosphere and plasmasphere on quiet days. Journal of Geophysical Research, 1976, 81, 1447-1450.	3.3	55
201	Theory of longitudinal gradients in the equatorial electrojet. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 279-286.	0.9	20
202	Equatorial electrojet and regular daily variation SR—III. Comparison of observations with a physical model. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 113-121.	0.9	61
203	On the production mechanism of electric currents and fields in the ionosphere. Journal of Geophysical Research, 1976, 81, 547-555.	3.3	213
204	Energy Relations of Atmospheric Tides and Their Significance to Approximate Methods of Solution for Tides with Dissipative Forces. Journals of the Atmospheric Sciences, 1975, 32, 980-987.	0.6	35
205	Thermospheric response to a magnetic substorm. Journal of Geophysical Research, 1975, 80, 2839-2850.	3.3	298
206	The computation of magnetic effects of field-aligned magnetospheric currents. Journal of Atmospheric and Solar-Terrestrial Physics, 1974, 36, 245-252.	0.9	31
207	Selfâ€induced motions of thermal plasma in the magnetosphere and the stability of the plasmapause. Radio Science, 1973, 8, 1019-1027.	0.8	45
208	The ionospheric dynamo and equatorial magnetic variations. Journal of Atmospheric and Solar-Terrestrial Physics, 1973, 35, 1045-1061.	0.9	74
209	Equatorial electrojet—I. Development of a model including winds and instabilities. Journal of Atmospheric and Solar-Terrestrial Physics, 1973, 35, 1083-1103.	0.9	240
210	Equatorial electrojet—II. Use of the model to study the equatorial ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1973, 35, 1105-1118.	0.9	90
211	The relationship between the structure of the equatorial anomaly and the strength of the equatorial electrojet. Journal of Atmospheric and Solar-Terrestrial Physics, 1973, 35, 1171-1180.	0.9	59
212	Geomagnetic Crochets and Associated Ionospheric Current Systems. Radio Science, 1971, 6, 139-164.	0.8	49
213	Tidal Winds at Ionospheric Heights. Radio Science, 1971, 6, 175-189.	0.8	39
214	Relation of the westward drift of the geomagnetic field to the rotation of the Earth's core. Journal of Geophysical Research, 1969, 74, 3013-3018.	3.3	19
215	Global-Scale Observations of the Limb and Disk (Gold): New Observing Capabilities for the lonosphere-Thermosphere. Geophysical Monograph Series, 0, , 319-326.	0.1	8
216	Global Modeling of Storm-Time Thermospheric Dynamics and Electrodynamics. Geophysical Monograph Series, 0, , 187-200.	0.1	18

#	Article	IF	CITATIONS
217	A Data-model Comparative Study of Ionospheric Positive Storm Phase in the Midlatitude F Region. Geophysical Monograph Series, 0, , 63-75.	0.1	3
218	The Ionospheric Wind Dynamo: Effects of Its Coupling With Different Atmospheric Regions. Geophysical Monograph Series, 0, , 49-65.	0.1	32