Ian E Gentle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605830/publications.pdf Version: 2024-02-01

IAN E CENTLE

#	Article	IF	CITATIONS
1	The deubiquitinase Usp27x as a novel regulator of cFLIPL protein expression and sensitizer to death-receptor-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2022, 27, 112-132.	4.9	4
2	Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death and Differentiation, 2022, 29, 2046-2059.	11.2	16
3	GMâ€CSF suppresses antioxidant signaling and drives ILâ€l β secretion through NRF2 downregulation. EMBO Reports, 2022, 23, .	4.5	4
4	The AML-associated K313 mutation enhances C/EBPα activity by leading to C/EBPα overexpression. Cell Death and Disease, 2021, 12, 675.	6.3	1
5	Diversity of cell death signaling pathways in macrophages upon infection with modified vaccinia virus Ankara (MVA). Cell Death and Disease, 2021, 12, 1011.	6.3	8
6	Supramolecular Complexes in Cell Death and Inflammation and Their Regulation by Autophagy. Frontiers in Cell and Developmental Biology, 2019, 7, 73.	3.7	8
7	A nonâ€death function of the mitochondrial apoptosis apparatus in immunity. EMBO Journal, 2019, 38, .	7.8	82
8	Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes. Cell Death and Disease, 2018, 9, 529.	6.3	26
9	<scp>TIR</scp> â€domainâ€containing adapterâ€inducing interferonâ€i² (<scp>TRIF</scp>) forms filamentous structures, whose proâ€apoptotic signalling is terminated by autophagy. FEBS Journal, 2017, 284, 1987-2003.	4.7	22
10	Infection of epithelial cells with <i>Chlamydia trachomatis</i> inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cellular Microbiology, 2016, 18, 1583-1595.	2.1	23
11	Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins. PLoS ONE, 2016, 11, e0164003.	2.5	8
12	Inhibitors of apoptosis proteins (IAPs) are required for effective T-cell expansion/survival during antiviral immunity in mice. Blood, 2014, 123, 659-668.	1.4	37
13	Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation. Cell Death and Differentiation, 2013, 20, 1068-1079.	11.2	20
14	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	14.3	430
15	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€transcriptional regulator Ccr4â€Pop2. Molecular Microbiology, 2011, 79, 968-989.	2.5	115
16	In TNF-stimulated Cells, RIPK1 Promotes Cell Survival by Stabilizing TRAF2 and cIAP1, which Limits Induction of Non-canonical NF-κB and Activation of Caspase-8. Journal of Biological Chemistry, 2011, 286, 13282-13291.	3.4	81
17	New Perspectives in TNF-R1-Induced NF-κB Signaling. Advances in Experimental Medicine and Biology, 2011, 691, 79-88.	1.6	9
18	RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death and Differentiation, 2010, 17, 482-487.	11.2	162

IAN E GENTLE

#	Article	IF	CITATIONS
19	TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-κB Dependent Induction of cFLIPL. PLoS ONE, 2010, 5, e8620.	2.5	19
20	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	3.4	202
21	Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space. Biochemical Journal, 2008, 409, 377-387.	3.7	31
22	Conserved Motifs Reveal Details of Ancestry and Structure in the Small TIM Chaperones of the Mitochondrial Intermembrane Space. Molecular Biology and Evolution, 2007, 24, 1149-1160.	8.9	86
23	Integral membrane proteins in the mitochondrial outer membrane of Saccharomyces cerevisiae. FEBS Journal, 2006, 273, 1507-1515.	4.7	50
24	Molecular architecture and function of the Omp85 family of proteins. Molecular Microbiology, 2005, 58, 1216-1225.	2.5	204
25	Mature DIABLO/Smac Is Produced by the IMP Protease Complex on the Mitochondrial Inner Membrane. Molecular Biology of the Cell, 2005, 16, 2926-2933.	2.1	89
26	The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. Journal of Cell Biology, 2004, 164, 19-24.	5.2	335
27	Direct Production of Proteins with N-Terminal Cysteine for Site-Specific Conjugation. Bioconjugate Chemistry, 2004, 15, 658-663.	3.6	97