Aleksander S Popel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605406/publications.pdf Version: 2024-02-01

		18482	34986
314	14,110	62	98
papers	citations	h-index	g-index
322	322	322	12516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MICROCIRCULATION AND HEMORHEOLOGY. Annual Review of Fluid Mechanics, 2005, 37, 43-69.	25.0	674
2	A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvascular Research, 1986, 32, 164-189.	2.5	252
3	Extracellular regulation of VEGF: Isoforms, proteolysis, and vascular patterning. Cytokine and Growth Factor Reviews, 2014, 25, 1-19.	7.2	248
4	Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. British Journal of Cancer, 2007, 97, 978-985.	6.4	237
5	Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. Journal of Biomechanics, 2008, 41, 47-55.	2.1	225
6	Nitric Oxide in the Vasculature: Where Does It Come From and Where Does It Go? A Quantitative Perspective. Antioxidants and Redox Signaling, 2008, 10, 1185-1198.	5.4	209
7	Blood Flow and Cell-Free Layer in Microvessels. Microcirculation, 2010, 17, 615-628.	1.8	207
8	Impaired Angiogenesis After Hindlimb Ischemia in Type 2 Diabetes Mellitus. Circulation Research, 2007, 101, 948-956.	4.5	192
9	Effect of erythrocyte aggregation on velocity profiles in venules. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H222-H236.	3.2	186
10	Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvascular Research, 2009, 77, 265-272.	2.5	185
11	A Computational Study of the Effect of Capillary Network Anastomoses and Tortuosity on Oxygen Transport. Journal of Theoretical Biology, 2000, 206, 181-194.	1.7	183
12	Reactive Oxygen Species Regulate Hypoxia-Inducible Factor 1α Differentially in Cancer and Ischemia. Molecular and Cellular Biology, 2008, 28, 5106-5119.	2.3	167
13	An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Physical Biology, 2007, 4, 285-295.	1.8	161
14	A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. Journal of Cellular and Molecular Medicine, 2010, 14, 528-552.	3.6	161
15	Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nature Communications, 2014, 5, 4715.	12.8	154
16	A Membrane Bending Model of Outer Hair Cell Electromotility. Biophysical Journal, 2000, 78, 2844-2862.	0.5	148
17	Micro- and Nanomechanics of the Cochlear Outer Hair Cell. Annual Review of Biomedical Engineering, 2001, 3, 169-194.	12.3	146
18	Computational Fluid Dynamic Simulation of Aggregation of Deformable Cells in a Shear Flow. Journal of Biomechanical Engineering, 2005, 127, 1070.	1.3	143

#	Article	IF	CITATIONS
19	Systems Biology of Vascular Endothelial Growth Factors. Microcirculation, 2008, 15, 715-738.	1.8	141
20	Temporal and spatial variations of cell-free layer width in arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1526-H1535.	3.2	139
21	Multiscale models of angiogenesis. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 14-31.	0.8	139
22	A systems biology view of blood vessel growth and remodelling. Journal of Cellular and Molecular Medicine, 2014, 18, 1491-1508.	3.6	139
23	Anti-Angiogenic Peptides for Cancer Therapeutics. Current Pharmaceutical Biotechnology, 2011, 12, 1101-1116.	1.6	139
24	Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H153-H164.	3.2	134
25	A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Systems Biology, 2008, 2, 77.	3.0	119
26	Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: Experimental and theoretical. Microvascular Research, 1988, 35, 341-362.	2.5	118
27	A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. Journal of the Royal Society Interface, 2017, 14, 20170320.	3.4	118
28	Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Scientific Reports, 2016, 6, 36992.	3.3	115
29	Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment. Processes, 2019, 7, 37.	2.8	115
30	Dimerization of VEGF receptors and implications for signal transduction: A computational study. Biophysical Chemistry, 2007, 128, 125-139.	2.8	109
31	Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Systems Biology, 2009, 3, 13.	3.0	103
32	VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. Journal of Applied Physiology, 2007, 102, 722-734.	2.5	97
33	Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Experimental Cell Research, 2011, 317, 955-965.	2.6	95
34	A Computational Study of the Effect of Vasomotion on Oxygen Transport from Capillary Networks. Journal of Theoretical Biology, 2001, 209, 189-199.	1.7	94
35	Effect of Tumor Microenvironment on Tumor VEGF During Anti-VEGF Treatment: Systems Biology Predictions. Journal of the National Cancer Institute, 2013, 105, 802-811.	6.3	92
36	Increase of Plasma VEGF after Intravenous Administration of Bevacizumab Is Predicted by a Pharmacokinetic Model. Cancer Research, 2010, 70, 9886-9894.	0.9	90

#	Article	IF	CITATIONS
37	A compartmental model for oxygen transport in brain microcirculation. Annals of Biomedical Engineering, 1989, 17, 13-38.	2.5	88
38	A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. Journal of Cell Science, 2006, 119, 3467-3480.	2.0	88
39	Effect of red blood cell shape on oxygen transport in capillaries. Mathematical Biosciences, 1993, 116, 89-110.	1.9	87
40	Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2245-H2253.	3.2	86
41	Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H459-H474.	3.2	85
42	Endothelial cells decode VEGF-mediated Ca ²⁺ signaling patterns to produce distinct functional responses. Science Signaling, 2016, 9, ra20.	3.6	85
43	Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radical Biology and Medicine, 2006, 41, 668-680.	2.9	83
44	Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches. PLoS Computational Biology, 2006, 2, e180.	3.2	82
45	A Biochemical Model of Matrix Metalloproteinase 9 Activation and Inhibition. Journal of Biological Chemistry, 2007, 282, 37585-37596.	3.4	81
46	Systems biology of proâ€angiogenic therapies targeting the VEGF system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 694-707.	6.6	80
47	Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Physical Biology, 2012, 9, 026010.	1.8	80
48	A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13775-13780.	7.1	78
49	A Reaction-Diffusion Model of Basic Fibroblast Growth Factor Interactions with Cell Surface Receptors. Annals of Biomedical Engineering, 2004, 32, 645-663.	2.5	77
50	Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2851-H2860.	3.2	77
51	A Theoretical Model of Type I Collagen Proteolysis by Matrix Metalloproteinase (MMP) 2 and Membrane Type 1 MMP in the Presence of Tissue Inhibitor of Metalloproteinase 2. Journal of Biological Chemistry, 2004, 279, 39105-39114.	3.4	74
52	A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cGMP formation. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1043-H1056.	3.2	72
53	Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1085-H1093.	3.2	71
54	Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1985-H1996.	3.2	70

#	Article	IF	CITATIONS
55	Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers. Microvascular Research, 2003, 66, 49-58.	2.5	70
56	A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvascular Research, 2014, 91, 8-21.	2.5	69
57	A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Scientific Reports, 2019, 9, 11286.	3.3	69
58	Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2265-H2277.	3.2	68
59	Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. Journal of Applied Physiology, 2004, 97, 293-301.	2.5	68
60	Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: Insights from a computational model. Journal of Theoretical Biology, 2006, 238, 124-145.	1.7	68
61	A Computer-Based Method for Determination of the Cell-Free Layer Width in Microcirculation. Microcirculation, 2006, 13, 199-207.	1.8	66
62	A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. Journal of Theoretical Biology, 2006, 241, 94-108.	1.7	66
63	Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success. Annals of Biomedical Engineering, 2016, 44, 2626-2641.	2.5	66
64	A Theoretical Analysis of Intracellular Oxygen Diffusion. Journal of Theoretical Biology, 1995, 176, 433-445.	1.7	65
65	A Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. PLoS ONE, 2009, 4, e5108.	2.5	65
66	Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Reviews in Molecular Medicine, 2015, 17, e3.	3.9	65
67	Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes. Nitric Oxide - Biology and Chemistry, 2008, 18, 47-60.	2.7	64
68	Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3740-H3749.	3.2	63
69	Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Research, 2018, 20, 54.	5.0	63
70	Quantifying the Proteolytic Release of Extracellular Matrix-Sequestered VEGF with a Computational Model. PLoS ONE, 2010, 5, e11860.	2.5	62
71	Theoretical models for coronary vascular biomechanics: Progress & challenges. Progress in Biophysics and Molecular Biology, 2011, 104, 49-76.	2.9	62
72	Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discovery Today, 2015, 20, 187-197.	6.4	62

5

#	Article	IF	CITATIONS
73	CALCULATIONS OF OXYGEN TRANSPORT BY RED BLOOD CELLS AND HEMOGLOBIN SOLUTIONS IN CAPILLARIES. Artificial Cells, Blood Substitutes, and Biotechnology, 2002, 30, 157-188.	0.9	61
74	Gene delivery nanoparticles to modulate angiogenesis. Advanced Drug Delivery Reviews, 2017, 119, 20-43.	13.7	61
75	Estimating oxygen transport resistance of the microvascular wall. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H657-H671.	3.2	60
76	Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H939-H950.	3.2	60
77	Identification of novel short peptides derived from the α4, α5, and α6 fibrils of type IV collagen with anti-angiogenic properties. Biochemical and Biophysical Research Communications, 2007, 354, 434-439.	2.1	60
78	Module-based multiscale simulation of angiogenesis in skeletal muscle. Theoretical Biology and Medical Modelling, 2011, 8, 6.	2.1	60
79	Oxygen transport in resting and contracting hamster cremaster muscles: Experimental and theoretical microvascular studies. Microvascular Research, 1983, 25, 108-131.	2.5	59
80	VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2174-H2191.	3.2	59
81	Aggregate formation of erythrocytes in postcapillary venules. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H584-H590.	3.2	58
82	Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts. Neoplasia, 2009, 11, 1285-IN2.	5.3	58
83	Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Systems Biology, 2011, 5, 193.	3.0	58
84	Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy. PLoS Computational Biology, 2006, 2, e127.	3.2	57
85	Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Systems Biology, 2011, 5, 59.	3.0	57
86	Calculations of intracapillary oxygen tension distributions in muscle. Mathematical Biosciences, 2000, 167, 123-143.	1.9	56
87	Experimental and Theoretical Studies of Oxygen Gradients in Rat Pial Microvessels. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1597-1604.	4.3	56
88	The Presence of VEGF Receptors on the Luminal Surface of Endothelial Cells Affects VEGF Distribution and VEGF Signaling. PLoS Computational Biology, 2009, 5, e1000622.	3.2	55
89	The cost of departure from optimal radii in microvascular networks. Journal of Theoretical Biology, 1989, 136, 245-265.	1.7	54
90	Modeling triple-negative breast cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature. Journal of Theoretical Biology, 2018, 452, 56-68.	1.7	54

#	Article	lF	CITATIONS
91	<i>In silico</i> simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model. Royal Society Open Science, 2019, 6, 190366.	2.4	54
92	Expression of VEGF Receptors on Endothelial Cells in Mouse Skeletal Muscle. PLoS ONE, 2012, 7, e44791.	2.5	54
93	Effect of outer hair cell piezoelectricity on high-frequency receptor potentials. Journal of the Acoustical Society of America, 2003, 113, 453-461.	1.1	53
94	Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms. AAPS Journal, 2012, 14, 500-509.	4.4	53
95	A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer. AAPS Journal, 2019, 21, 79.	4.4	53
96	Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature. Annals of Biomedical Engineering, 2012, 40, 2425-2441.	2.5	52
97	Lymphatic endothelial cells support tumor growth in breast cancer. Scientific Reports, 2014, 4, 5853.	3.3	51
98	Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget, 2017, 8, 60210-60222.	1.8	51
99	Quantitative fluorescent profiling of <scp>VEGFR</scp> s reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Medicine, 2014, 3, 225-244.	2.8	50
100	Multiscale Modeling in the Clinic: Drug Design and Development. Annals of Biomedical Engineering, 2016, 44, 2591-2610.	2.5	50
101	Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing aÂserpin-derived peptide. Biomaterials, 2013, 34, 7544-7551.	11.4	49
102	An agent-based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC Systems Biology, 2017, 11, 68.	3.0	49
103	Identification of dynamic mechanical parameters of the human chest during manual cadiopulmonary resuscitation. IEEE Transactions on Biomedical Engineering, 1990, 37, 211-217.	4.2	48
104	Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H113-H120.	3.2	48
105	A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. Journal of Theoretical Biology, 2007, 248, 657-674.	1.7	47
106	Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Scientific Reports, 2014, 4, 7139.	3.3	47
107	Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H941-H947.	3.2	46
108	Inhibition of Lymphangiogenesis and Angiogenesis in Breast Tumor Xenografts and Lymph Nodes by a Peptide Derived from Transmembrane Protein 45A. Neoplasia, 2013, 15, 112-IN6.	5.3	46

#	Article	IF	CITATIONS
109	Angiopoietin-Tie Signaling Pathway in Endothelial Cells: A Computational Model. IScience, 2019, 20, 497-511.	4.1	46
110	A mathematical model of countercurrent exchange of oxygen between paired arterioles and venules. Mathematical Biosciences, 1988, 91, 17-34.	1.9	45
111	Intracoronary administration of FGF-2: a computational model of myocardial deposition and retention. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H263-H279.	3.2	44
112	Multi-scale Computational Models of Pro-angiogenic Treatments in Peripheral Arterial Disease. Annals of Biomedical Engineering, 2007, 35, 982-994.	2.5	44
113	Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer, 2010, 10, 29.	2.6	44
114	Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Frontiers in Physiology, 2020, 11, 583333.	2.8	42
115	Angiogenesis-Associated Crosstalk Between Collagens, CXC Chemokines, and Thrombospondin Domain-Containing Proteins. Annals of Biomedical Engineering, 2011, 39, 2213-2222.	2.5	41
116	Effect of dispersion of vessel diameters and lengths in stochastic networks. Microvascular Research, 1986, 31, 203-222.	2.5	40
117	Analysis of vascular pattern and dimensions in arteriolar networks of the retractor muscle in young hamsters. Microvascular Research, 1987, 34, 168-183.	2.5	40
118	Three autocrine feedback loops determine HIF1α expression in chronic hypoxia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1511-1525.	4.1	40
119	Computational model of VEGFR2 pathway to ERK activation and modulation through receptor trafficking. Cellular Signalling, 2013, 25, 2496-2510.	3.6	40
120	A Model of Nitric Oxide Capillary Exchange. Microcirculation, 2003, 10, 479-495.	1.8	39
121	Tyrosine kinase blocking collagen IV–derived peptide suppresses ocular neovascularization and vascular leakage. Science Translational Medicine, 2017, 9, .	12.4	39
122	A mechanistic integrative computational model of macrophage polarization: Implications in human pathophysiology. PLoS Computational Biology, 2019, 15, e1007468.	3.2	39
123	Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes. Biorheology, 1998, 35, 69-87.	0.4	38
124	Monte Carlo simulations of VEGF binding to cell surface receptors in vitro. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 95-107.	4.1	38
125	An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. Journal of the Royal Society Interface, 2014, 11, 20140640.	3.4	38
126	A collagen IV–derived peptide disrupts α5β1 integrin and potentiates Ang2/Tie2 signaling. JCI Insight, 2019, 4, .	5.0	38

#	Article	IF	CITATIONS
127	A Two-Compartment Model of VEGF Distribution in the Mouse. PLoS ONE, 2011, 6, e27514.	2.5	38
128	Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice. Frontiers in Oncology, 2013, 3, 196.	2.8	37
129	Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle. PLoS ONE, 2012, 7, e44375.	2.5	37
130	Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Scientific Reports, 2015, 5, 12133.	3.3	36
131	Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation. PLoS ONE, 2013, 8, e67438.	2.5	36
132	Estimation of elastic moduli and bending stiffness of the anisotropic outer hair cell wall. Journal of the Acoustical Society of America, 1998, 103, 1007-1011.	1.1	35
133	Conducting a Virtual Clinical Trial in HER2-Negative Breast Cancer Using a Quantitative Systems Pharmacology Model With an Epigenetic Modulator and Immune Checkpoint Inhibitors. Frontiers in Bioengineering and Biotechnology, 2020, 8, 141.	4.1	35
134	Effect of heterogeneous oxygen delivery on the oxygen distribution in skeletal muscle. Mathematical Biosciences, 1986, 81, 91-113.	1.9	34
135	QSPâ€Ю: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immunoâ€Oncology Applications. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 484-497.	2.5	34
136	An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator. Biotechnology and Bioengineering, 2002, 77, 405-419.	3.3	33
137	Computational Model of MicroRNA Control of HIF-VEGF Pathway: Insights into the Pathophysiology of Ischemic Vascular Disease and Cancer. PLoS Computational Biology, 2015, 11, e1004612.	3.2	33
138	Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human tripleâ€negative breast cancer cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 1753-1764.	4.0	33
139	Computer Simulation of TSP1 Inhibition of VEGF–Akt–eNOS: An Angiogenesis Triple Threat. Frontiers in Physiology, 2018, 9, 644.	2.8	33
140	Stratified multiphase model for blood flow in a venular bifurcation. Annals of Biomedical Engineering, 1997, 25, 135-153.	2.5	32
141	Nitric oxide production pathways in erythrocytes and plasma. Biorheology, 2009, 46, 107-119.	0.4	32
142	Effects of Chlorpromazine on Mechanical Properties of the Outer Hair Cell Plasma Membrane. Biophysical Journal, 2005, 89, 4090-4095.	0.5	31
143	Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Clinical and Experimental Metastasis, 2014, 31, 67-79.	3.3	31
144	Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. , 2020, 8, e001141.		31

#	Article	IF	CITATIONS
145	Potential distribution for a spheroidal cell having a conductive membrane in an electric field. IEEE Transactions on Biomedical Engineering, 1996, 43, 970-972.	4.2	30
146	A Compartmental Model for Oxygen Transport in Brain Microcirculation in the Presence of Blood Substitutes. Journal of Theoretical Biology, 2002, 216, 479-500.	1.7	30
147	Venular endothelium-derived NO can affect paired arteriole: a computational model. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H716-H723.	3.2	30
148	Constructing the angiome: a global angiogenesis protein interaction network. Physiological Genomics, 2012, 44, 915-924.	2.3	30
149	Human expression patterns: qualitative and quantitative analysis of thrombospondinâ€1 under physiological and pathological conditions. Journal of Cellular and Molecular Medicine, 2018, 22, 2086-2097.	3.6	30
150	Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors. Frontiers in Oncology, 2018, 8, 649.	2.8	30
151	Analysis of capillary-tissue diffusion in multicapillary systems. Mathematical Biosciences, 1978, 39, 187-211.	1.9	29
152	Quantitative systems pharmacology model predictions for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. , 2021, 9, e002100.		29
153	Vascular Smooth Muscle NO Exposure from Intraerythrocytic SNOHb: A Mathematical Model. Antioxidants and Redox Signaling, 2007, 9, 1097-1110.	5.4	28
154	Vascular and perivascular nitric oxide release and transport: Biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3). Free Radical Biology and Medicine, 2007, 42, 811-822.	2.9	28
155	Trans-scleral Delivery of Antiangiogenic Proteins. Journal of Ocular Pharmacology and Therapeutics, 2008, 24, 70-79.	1.4	28
156	Effect of dispersion of vessel diameters and lengths in stochastic networks. Microvascular Research, 1986, 31, 223-234.	2.5	27
157	Role of Microvessels in Oxygen Supply to Tissue. Physiology, 1994, 9, 119-123.	3.1	27
158	The ratio of elastic moduli of cochlear outer hair cells derived from osmotic experiments. Journal of the Acoustical Society of America, 1996, 99, 1025-1028.	1.1	27
159	Erythrocyte margination and sedimentation in skeletal muscle venules. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H951-H958.	3.2	27
160	Systems Biology and Physiome Projects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 153-158.	6.6	27
161	Gene therapy from the perspective of systems biology. Current Opinion in Molecular Therapeutics, 2010, 12, 570-7.	2.8	27
162	Application of Chimera grid to modelling cell motion and aggregation in a narrow tube. International Journal for Numerical Methods in Fluids, 2007, 53, 105-128.	1.6	26

#	Article	IF	CITATIONS
163	Inhibition of VEGFR2 Activation and Its Downstream Signaling to ERK1/2 and Calcium by Thrombospondin-1 (TSP1): In silico Investigation. Frontiers in Physiology, 2017, 8, 48.	2.8	26
164	Computational investigation of sphingosine kinase 1 (SphK1) and calcium dependent ERK1/2 activation downstream of VEGFR2 in endothelial cells. PLoS Computational Biology, 2017, 13, e1005332.	3.2	26
165	A Quantitative Systems Pharmacology Model of T Cell Engager Applied to Solid Tumor. AAPS Journal, 2020, 22, 85.	4.4	26
166	A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. IScience, 2021, 24, 102112.	4.1	26
167	Modeling the circulation with three-terminal electrical networks containing special nonlinear capacitors. Annals of Biomedical Engineering, 1992, 20, 595-616.	2.5	25
168	Theoretical analysis of effects of blood substitute affinity and cooperativity on organ oxygen transport. Journal of Applied Physiology, 2002, 93, 2122-2128.	2.5	25
169	Protein Transport to Choroid and Retina following Periocular Injection: Theoretical and Experimental Study. Annals of Biomedical Engineering, 2007, 35, 615-630.	2.5	25
170	Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection. , 2018, 59, 5266.		25
171	Multi-Scale Spatial Analysis of the Tumor Microenvironment Reveals Features of Cabozantinib and Nivolumab Efficacy in Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, .	4.8	25
172	Anti-angiogenic peptides identified in thrombospondin type I domains. Biochemical and Biophysical Research Communications, 2007, 359, 63-69.	2.1	24
173	Peptides derived from type I thrombospondin repeat-containing proteins of the CCN family inhibit proliferation and migration of endothelial cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 2314-2323.	2.8	24
174	Tumor Ensemble-Based Modeling and Visualization of Emergent Angiogenic Heterogeneity in Breast Cancer. Scientific Reports, 2019, 9, 5276.	3.3	24
175	Nonlinear active force generation by cochlear outer hair cell. Journal of the Acoustical Society of America, 1999, 105, 2414-2420.	1.1	23
176	Analysis of VEGF-A Regulated Gene Expression in Endothelial Cells to Identify Genes Linked to Angiogenesis. PLoS ONE, 2011, 6, e24887.	2.5	23
177	An analytical solution for steady flow of a Quemada fluid in a circular tube. Rheologica Acta, 1993, 32, 422-426.	2.4	22
178	Novel antiâ€angiogenic peptides derived From ELRâ€containing CXC chemokines. Journal of Cellular Biochemistry, 2008, 104, 1356-1363.	2.6	22
179	Computational models of VEGF-associated angiogenic processes in cancer. Mathematical Medicine and Biology, 2012, 29, 85-94.	1.2	22
180	The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Scientific Reports, 2016, 6, 39460.	3.3	22

#	Article	IF	CITATIONS
181	Motion of a rigid cylinder between parallel plates in stokes flow. Computers and Fluids, 1987, 15, 391-404.	2.5	21
182	Analysis of the micropipet experiment with the anisotropic outer hair cell wall. Journal of the Acoustical Society of America, 1998, 103, 1001-1006.	1.1	21
183	Immunoactivating the tumor microenvironment enhances immunotherapy as predicted by integrative computational model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4447-4449.	7.1	21
184	A model for cochlear outer hair cell deformations in micropipette aspiration experiments: An analytical solution. Annals of Biomedical Engineering, 1996, 24, 241-249.	2.5	20
185	Diameter changes in skeletal muscle venules during arterial pressure reduction. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H47-H57.	3.2	20
186	Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation. International Journal of Biochemistry and Cell Biology, 2011, 43, 1812-1821.	2.8	20
187	Peptides that immunoactivate the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188486.	7.4	20
188	Modeling of Oxygen Diffusion from the Blood Vessels to Intracellular Organelles. Advances in Experimental Medicine and Biology, 2003, 530, 485-495.	1.6	20
189	Novel Peptide-Specific Quantitative Structure–Activity Relationship (QSAR) Analysis Applied to Collagen IV Peptides with Antiangiogenic Activity. Journal of Medicinal Chemistry, 2011, 54, 6492-6500.	6.4	19
190	Serpin-Derived Peptides Are Antiangiogenic and Suppress Breast Tumor Xenograft Growth. Translational Oncology, 2012, 5, 92-97.	3.7	19
191	Pharmacokinetics of Antiâ€VEGF Agent Aflibercept in Cancer Predicted by Dataâ€Driven, Molecularâ€Detailed Model. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4, 641-649.	2.5	19
192	Computational modeling of synergistic interaction between αVβ3 integrin and VEGFR2 in endothelial cells: Implications for the mechanism of action of angiogenesis-modulating integrin-binding peptides. Journal of Theoretical Biology, 2018, 455, 212-221.	1.7	19
193	Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mechanisms of Disease, 2022, 14, e1550.	3.3	19
194	Oxygen diffusive shunts under conditions of heterogeneous oxygen delivery. Journal of Theoretical Biology, 1982, 96, 533-541.	1.7	18
195	Motion of a rigid cylinder between parallel plates in stokes flow. Computers and Fluids, 1987, 15, 405-419.	2.5	18
196	Converging three-dimensional Stokes flow of two fluids in a T-type bifurcation. Journal of Fluid Mechanics, 1994, 270, 51-72.	3.4	18
197	An Analysis of Hypoxia in Sheep Brain using a Mathematical Model. Annals of Biomedical Engineering, 1998, 26, 48-59.	2.5	18
198	Outer hair cell active force generation in the cochlear environment. Journal of the Acoustical Society of America, 2007, 122, 2215-2225.	1.1	18

#	Article	IF	CITATIONS
199	A Peptide Derived from Type 1 Thrombospondin Repeat–Containing Protein WISP-1 Inhibits Corneal and Choroidal Neovascularization. , 2009, 50, 3840.		18
200	Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport. Physiological Genomics, 2009, 38, 29-41.	2.3	18
201	Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Computational Biology, 2017, 13, e1005272.	3.2	18
202	A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor–Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy. Cancers, 2021, 13, 3751.	3.7	18
203	Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response. ImmunoInformatics, 2021, 1-2, 100002.	2.2	18
204	Simulation of Motor-Driven Cochlear Outer Hair Cell Electromotility. Biophysical Journal, 2001, 81, 11-24.	0.5	17
205	Hypotonic swelling of salicylate-treated cochlear outer hair cells. Hearing Research, 2007, 228, 95-104.	2.0	17
206	Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis, 2013, 16, 159-170.	7.2	17
207	Angiogenesis Interactome and Time Course Microarray Data Reveal the Distinct Activation Patterns in Endothelial Cells. PLoS ONE, 2014, 9, e110871.	2.5	17
208	Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells. OncoTargets and Therapy, 2014, 7, 1571.	2.0	17
209	A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Scientific Reports, 2016, 6, 37030.	3.3	17
210	Mechanistically detailed systems biology modeling of the HGF/Met pathway in hepatocellular carcinoma. Npj Systems Biology and Applications, 2019, 5, 29.	3.0	17
211	Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases. International Journal of Molecular Sciences, 2019, 20, 421.	4.1	17
212	Cytokines secreted by stromal cells in TNBC microenvironment as potential targets for cancer therapy. Cancer Biology and Therapy, 2020, 21, 560-569.	3.4	17
213	Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture. Cell Reports Medicine, 2021, 2, 100382.	6.5	17
214	Oxygen diffusion from capillary layers with concurrent flow. Mathematical Biosciences, 1980, 50, 171-193.	1.9	16
215	Elastic Properties of the Composite Outer Hair Cell Wall. Annals of Biomedical Engineering, 1998, 26, 157-165.	2.5	16
216	Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: A quantitative analysis. Microvascular Research, 2009, 78, 107-118.	2.5	16

#	Article	IF	CITATIONS
217	Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anti-Cancer Drugs, 2012, 23, 706-712.	1.4	16
218	Anisotropic poly(lactic-co-glycolic acid) microparticles enable sustained release of a peptide for long-term inhibition of ocular neovascularization. Acta Biomaterialia, 2019, 97, 451-460.	8.3	16
219	Interpretation of Phosphorescence Quenching Measurements Made in the Presence of Oxygen Gradients. Advances in Experimental Medicine and Biology, 1998, 454, 375-383.	1.6	16
220	Algorithm for computing oxygen dissociation curve with pH, PCO2, and CO in sheep blood. Journal of Biomedical Engineering, 1989, 11, 48-52.	0.7	15
221	Outer hair cell length changes in an external electric field. I. The role of intracellular electroâ€osmotically generated pressure gradients. Journal of the Acoustical Society of America, 1995, 98, 2000-2010.	1.1	15
222	Measurements and a model of the outer hair cell hydraulic conductivity. Hearing Research, 1996, 96, 33-40.	2.0	15
223	Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment. Journal of the Acoustical Society of America, 2005, 117, 2147-2157.	1.1	15
224	Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis. Scientific Reports, 2018, 8, 1854.	3.3	15
225	Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer. American Journal of Cancer Research, 2015, 5, 1295-307.	1.4	15
226	Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. IScience, 2022, 25, 104702.	4.1	15
227	Predictions of capillary oxygen transport in the presence of fluorocarbon additives. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2250-H2257.	3.2	14
228	Analysis of Phosphorescence Decay in Heterogeneous Systems: Consequences of Finite Excitation Flash Duration. Photochemistry and Photobiology, 1999, 69, 624-632.	2.5	14
229	Nanostructure, Effective Properties, and Deformation Pattern of the Cochlear Outer Hair Cell Cytoskeleton. Journal of Biomechanical Engineering, 2002, 124, 180-187.	1.3	14
230	Chapter 18 Modeling of Growth Factor-Receptor Systems. Methods in Enzymology, 2009, 467, 461-497.	1.0	14
231	Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer. Cancer Biology and Therapy, 2011, 12, 808-817.	3.4	14
232	Structure–Activity Relationship Study of Collagenâ€Derived Antiâ€Angiogenic Biomimetic Peptides. Chemical Biology and Drug Design, 2012, 80, 27-37.	3.2	14
233	Dynamic Changes in Microvascular Flow Conductivity and Perfusion After Myocardial Infarction Shown by Imageâ€Based Modeling. Journal of the American Heart Association, 2019, 8, e011058. 	3.7	14
234	Quantitative Systems Pharmacology Modeling of PBMC-Humanized Mouse to Facilitate Preclinical Immuno-oncology Drug Development. ACS Pharmacology and Translational Science, 2021, 4, 213-225.	4.9	14

#	Article	IF	CITATIONS
235	Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pacific Symposium on Biocomputing, 2009, , 316-27.	0.7	14
236	Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells. Physical Review E, 2009, 80, 041905.	2.1	13
237	Effect of convection in capillaries on oxygen removal from arterioles in striated muscle. Journal of Theoretical Biology, 1990, 147, 275-288.	1.7	12
238	Parametric Analysis of the Relationship between End-capillary and Mean Tissue PO2as Predicted by a Mathematical Model. Journal of Theoretical Biology, 1998, 195, 439-449.	1.7	12
239	Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1947-H1954.	3.2	12
240	A Biomimetic Collagen Derived Peptide Exhibits Anti-Angiogenic Activity in Triple Negative Breast Cancer. PLoS ONE, 2014, 9, e111901.	2.5	12
241	PADPIN: protein-protein interaction networks of angiogenesis, arteriogenesis, and inflammation in peripheral arterial disease. Physiological Genomics, 2015, 47, 331-343.	2.3	12
242	Mathematical modeling of oxygen transport near a tissue surface: effect of the surface PO2. Mathematical Biosciences, 1981, 55, 231-246.	1.9	11
243	Mechanosensitive Channels in the Lateral Wall Can Enhance the Cochlear Outer Hair Cell Frequency Response. Annals of Biomedical Engineering, 2005, 33, 991-1002.	2.5	11
244	Regulation of the tumor immune microenvironment and vascular normalization in TNBC murine models by a novel peptide. Oncolmmunology, 2020, 9, 1760685.	4.6	11
245	Suppression of Ocular Vascular Inflammation through Peptide-Mediated Activation of Angiopoietin-Tie2 Signaling. International Journal of Molecular Sciences, 2020, 21, 5142.	4.1	10
246	Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model. Clinical Hemorheology and Microcirculation, 2007, 36, 217-33.	1.7	10
247	Numerical solution of two-dimensional stokes equations for flow with particles in a channel of arbitrary shape using boundary-conforming coordinates. Journal of Computational Physics, 1986, 67, 73-90.	3.8	9
248	Canine sternal force-displacement relationship during cardiopulmonary resuscitation. IEEE Transactions on Biomedical Engineering, 1999, 46, 788-796.	4.2	9
249	Modeling the Mechanics of Tethers Pulled From the Cochlear Outer Hair Cell Membrane. Journal of Biomechanical Engineering, 2008, 130, 031007.	1.3	9
250	INTEGRATION OF ANGIOGENESIS MODULES AT MULTIPLE SCALES: FROM MOLECULAR TO TISSUE. , 2008, , .		9
251	Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Angiogenesis, 2015, 18, 125-136.	7.2	9
252	Diffusion in tissue slices with metabolism obeying Michaelis-Menten kinetics. Journal of Theoretical Biology, 1979, 80, 325-332.	1.7	8

#	Article	IF	CITATIONS
253	Augmentation of pressure in a vessel indenting the surface of the lung. Annals of Biomedical Engineering, 1987, 15, 259-284.	2.5	8
254	Oxygen Tension Profiles in Isolated Hamster Retractor Muscle at Different Temperatures. Microvascular Research, 1996, 51, 288-302.	2.5	8
255	Computational drug repositioning for peripheral arterial disease: prediction of anti-inflammatory and pro-angiogenic therapeutics. Frontiers in Pharmacology, 2015, 6, 179.	3.5	8
256	Therapeutic potential of an anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma. Oncotarget, 2017, 8, 101520-101534.	1.8	8
257	Outer hair cell length changes in an external electric field. II. The role of electrokinetic forces on the cell surface. Journal of the Acoustical Society of America, 1995, 98, 2011-2017.	1.1	7
258	Invited Editorial on "A finite-element model of oxygen diffusion in the pulmonary capillaries― Journal of Applied Physiology, 1997, 82, 1717-1718.	2.5	7
259	An analysis of the hydraulic conductivity of the extracisternal space of the cochlear outer hair cell. Journal of Mathematical Biology, 2000, 40, 372-382.	1.9	7
260	Effect of voltage-dependent membrane properties on active force generation in cochlear outer hair cell. Journal of the Acoustical Society of America, 2005, 118, 3737-3746.	1.1	7
261	A systems biology model of junctional localization and downstream signaling of the Ang–Tie signaling pathway. Npj Systems Biology and Applications, 2021, 7, 34.	3.0	7
262	Mass transfer in the entrance region of a circular tube. International Journal of Heat and Mass Transfer, 1978, 21, 1133-1141.	4.8	6
263	Dynamic Multiscale Regulation of Perfusion Recovery in Experimental Peripheral Arterial Disease. JACC Basic To Translational Science, 2022, 7, 28-50.	4.1	6
264	Effect of intracapillary resistance to oxygen transport on the diffusional shunting between capillaries. Journal of Biomedical Engineering, 1988, 10, 400-405.	0.7	5
265	Computational fluid dynamics of aggregating red blood cells in postcapillary venules. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 385-397.	1.6	5
266	Three autocrine feedback loops determine HIF1α expression in chronic hypoxia. FASEB Journal, 2007, 21, A857.	0.5	4
267	High-Frequency Force Generation in the Constrained Cochlear Outer Hair Cell: A Model Study. JARO - Journal of the Association for Research in Otolaryngology, 2006, 6, 378-389.	1.8	3
268	A 3D Fractal-Based Approach towards Understanding Changes in the Infarcted Heart Microvasculature. Lecture Notes in Computer Science, 2015, , 173-180.	1.3	3
269	Simulating Therapeutics Using Multiscale Models of the VEGF Receptor System in Cancer. , 2012, , 37-53.		3
270	A model for cochlear outer hair cell deformations in micropipette aspiration experiments: An analytical solution. Annals of Biomedical Engineering, 1996, 24, A241-A249.	2.5	2

#	Article	IF	CITATIONS
271	Angiogenesis, Computational Modeling Perspective. , 2015, , 58-67.		2
272	Protocol for simulating macrophage signal transduction and phenotype polarization using a large-scale mechanistic computational model. STAR Protocols, 2021, 2, 100739.	1.2	2
273	Abstract 4531: Systems pharmacology to predict cellular biomarkers and optimize mono- and combination-therapy regimens: Focusing on immune checkpoint targets PD-1, PD-L1 and CTLA-4. Cancer Research, 2017, 77, 4531-4531.	0.9	2
274	AN ORIENTATIONAL MOTOR MODEL OF OUTER HAIR CELL ELECTROMOTILITY. , 2000, , .		2
275	Distribution of Intravascular and Extravascular Resistances to Oxygen Transport. , 1998, , 277-293.		1
276	Abstract 4267: Biomimetic anti-angiogenic peptide as therapeutic agent for breast cancer. , 2011, , .		1
277	Abstract 975: A multiscale computational model for spatio-temporal tumor immune response. , 2017, , .		1
278	Combinations of proâ€angiogenic therapies targeting VEGF and VEGF receptors outperform monotherapies in computational models of human skeletal muscle FASEB Journal, 2007, 21, A1214.	0.5	1
279	Comparison of antiâ€angiogenesis drugs targeting VECF receptors and the VEGF coâ€receptor Neuropilin FASEB Journal, 2007, 21, A747.	0.5	1
280	Applications of Network Bioinformatics to Cancer Angiogenesis. , 2012, , 229-244.		1
281	In Vitro and in Vivo Analyses of the Effects of Sunitinib on Endothelial Cellâ€Surface Vascular Endothelial Growth Factor Receptorâ€2. FASEB Journal, 2015, 29, 780.4.	0.5	1
282	Imageâ€based Characterization of Functional and Structural Heterogeneity of Tumor Xenografts using Blood Flow modeling, Oxygenation Modeling and Multivariate Analysis. FASEB Journal, 2015, 29, 787.11.	0.5	1
283	Mathematical Models of Transport Phenomena in Normal and Neoplastic Tissue. , 2020, , 169-183.		1
284	Systems biology modeling of endothelial cell and macrophage signaling in angiogenesis in human diseases. , 2022, , 163-172.		1
285	Effect of Hemoglobin-Based Blood Substitutes on Nitric Oxide Transport: Mathematical Models. , 2005, , 176-185.		Ο
286	Computational Analysis of the Tether Pulling Experiment to Probe Cellular Membranes. , 2009, , .		0
287	Integrated Transcriptomic and Proteomic Analyses Reveal Role of the Hexosamine Biosynthetic Pathway in Invasion and Metastasis of Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2020, 108, S49-S50.	0.8	0
288	Computational Systems Biology Modeling of the Angiopoietinâ€Tie Signaling Pathway and its Crosstalk with α5β1 Integrin in Endothelial Cells. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
289	Imageâ€Based Modeling of the Invasive Vascular Front in Breast Cancer. FASEB Journal, 2021, 35, .	0.5	0
290	Spatial and temporal variations of cellâ€free layer in arterioles. FASEB Journal, 2006, 20, A286.	0.5	0
291	Collision frequency of erythrocytes in postcapillary venules. FASEB Journal, 2006, 20, A280.	0.5	0
292	Nitric Oxide Delivered By Intraerythrocytic SNOHb To Vascular Smooth Muscle: A Theoretical Analysis. FASEB Journal, 2007, 21, A1231.	0.5	0
293	Computational Modeling of Enzymatic Nitric Oxide Production And Transport In The Microvasculature. FASEB Journal, 2007, 21, A1218.	0.5	0
294	Local stimulation of angiogenesis following cellâ€based therapy in peripheral arterial disease: computational simulations FASEB Journal, 2007, 21, A856.	0.5	0
295	Mechanics, Molecular Transport, and Regulation in the Microcirculation. , 2007, , 13-1-13-14.		0
296	Nitric oxide release from nitric oxide synthase on erythrocytes during hemorrhagic shock. FASEB Journal, 2008, 22, 749.7.	0.5	0
297	Towards a systematic design of novel endogenous peptideâ€based antiangiogenic approaches. FASEB Journal, 2008, 22, 925.15.	0.5	0
298	Investigating transient and prolonged VEGF signaling through regulation of intracellular calcium. FASEB Journal, 2009, 23, 767.15.	0.5	0
299	Proâ€engiogenic and antiâ€engiogenic therapies targeting the VEGFâ€VEGFR system. FASEB Journal, 2009, 23, 592.27.	0.5	0
300	Modeling Skeletal Muscle Angiogenesis from the Molecular to the Tissue Level. FASEB Journal, 2009, 23, 592.24.	0.5	0
301	Effects of an antiâ€VECF administration on wholeâ€body VECF distribution assessed by a molecularlyâ€detailed pharmacokinetic model: a cancer study. FASEB Journal, 2009, 23, 592.22.	0.5	0
302	A Systems Model of HIF1α Dynamics in Ischemia. FASEB Journal, 2009, 23, 767.6.	0.5	0
303	Computational models of personalized medicine: leading indicators for angiogenesis therapies. FASEB Journal, 2010, 24, 593.8.	0.5	0
304	Identification of morphological and hemodynamic biomarkers for tumor vascular perfusion through mathematical modeling and highâ€resolution imaging. FASEB Journal, 2013, 27, 685.12.	0.5	0
305	Abstract 3001: Angiogenesis-related cytokine secretion pattern in tumor interstitial fluid and its relationship with VEGF expression and metastatic profile. , 2014, , .		0
306	Experimental and Computational Studies of CCR5 Cell‣urface Receptor Heterogeneity and Angiogenesis in Tripleâ€Negative Breast Cancer – a Step Towards Understanding Lung Metastasis. FASEB Journal, 2015, 29, .	0.5	0

#	Article	IF	CITATIONS
307	Abstract 4172: Differential angiogenesis-related cytokines release in tumor interstitial fluid and plasma in ER-positive and triple-negative breast cancers overexpressing VEGF. , 2015, , .		0
308	Abstract 4084: Crosstalk between TNBC and stromal components via secreted factors enhances cell motility that can be attenuated by a CXCR1 inhibitor. , 2016, , .		0
309	Abstract 3370: Metabolic profiling of the tumor interstitial fluid using 1H MRS: contribution of breast cancer subtypes and VEGF overexpression. , 2016, , .		0
310	Abstract 5896: IL-8 signaling enhances TNBC growth and metastasis via crosstalk with stromal components. , 2017, , .		0
311	Abstract 3201: Therapeutic potential of anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma. , 2017, , .		0
312	Angiopoietin-Tie Signaling Pathway in Endothelial Cells: A Computational Model. SSRN Electronic Journal, O, , .	0.4	0
313	Simulations of Combination Therapy in Hepatocellular Carcinoma Using a Quantitative Systems Pharmacology Model. FASEB Journal, 2020, 34, 1-1.	0.5	0
314	Endothelial Regulation of Microvascular Growth and Stability by Angâ€īe and VEGF Signaling Pathways: A Mechanistic Computational Systems Biology Model. FASEB Journal, 2022, 36, .	0.5	0