Kai Zinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605234/publications.pdf

Version: 2024-02-01

236925 189892 2,946 51 25 50 citations h-index g-index papers 73 73 73 2834 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature, 1994, 367, 429-434.	27.8	294
2	Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function. PLoS Biology, 2004, 2, e429.	5.6	227
3	An Extracellular Interactome of Immunoglobulin and LRR Proteins Reveals Receptor-Ligand Networks. Cell, 2013, 154, 228-239.	28.9	207
4	Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell, 1991, 67, 675-685.	28.9	201
5	Development and plasticity of the <i>Drosophila</i> larval neuromuscular junction. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 647-670.	5.9	190
6	lg Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell, 2015, 163, 1756-1769.	28.9	184
7	A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Current Biology, 2001, 11, 417-430.	3.9	179
8	Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell, 2015, 163, 1770-1782.	28.9	155
9	The Translational Repressor Pumilio Regulates Presynaptic Morphology and Controls Postsynaptic Accumulation of Translation Factor elF-4E. Neuron, 2004, 44, 663-676.	8.1	143
10	The Heparan Sulfate Proteoglycan Syndecan Is an In Vivo Ligand for the Drosophila LAR Receptor Tyrosine Phosphatase. Current Biology, 2005, 15, 1701-1711.	3.9	139
11	A Screen of Cell-Surface Molecules Identifies Leucine-Rich Repeat Proteins as Key Mediators of Synaptic Target Selection. Neuron, 2008, 59, 972-985.	8.1	116
12	The Translational Repressors Nanos and Pumilio Have Divergent Effects on Presynaptic Terminal Growth and Postsynaptic Glutamate Receptor Subunit Composition. Journal of Neuroscience, 2009, 29, 5558-5572.	3.6	59
13	A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Cell, 2020, 182, 1027-1043.e17.	28.9	57
14	Complex Genetic Interactions among Four Receptor Tyrosine Phosphatases Regulate Axon Guidance in Drosophila. Molecular and Cellular Neurosciences, 2001, 17, 274-291.	2.2	53
15	Neural immunoglobulin superfamily interaction networks. Current Opinion in Neurobiology, 2017, 45, 99-105.	4.2	50
16	Regulation of CNS and motor axon guidance in <i>Drosophila</i> by the receptor tyrosine phosphatase DPTP52F. Development (Cambridge), 2001, 128, 4371-4382.	2.5	50
17	Interactions between Dpr11 and DIP- \hat{l}^3 control selection of amacrine neurons in Drosophila color vision circuits. ELife, 2019, 8, .	6.0	46
18	Transsynaptic interactions between IgSF proteins DIP- \hat{l}_{\pm} and Dpr10 are required for motor neuron targeting specificity. ELife, 2019, 8, .	6.0	42

#	Article	IF	Citations
19	Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. ELife, 2017, 6, .	6.0	41
20	Interactions between a Receptor Tyrosine Phosphatase and a Cell Surface Ligand Regulate Axon Guidance and Glial-Neuronal Communication. Neuron, 2013, 78, 813-826.	8.1	35
21	Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biology, 2014, 12, 92.	3.8	33
22	Immunolocalization of synaptotagmin for the study of synapses in the developing antennal lobe of Manduca sexta. Journal of Comparative Neurology, 2001, 441, 277-287.	1.6	32
23	Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Development, 2008, 3, 3.	2.4	32
24	Tenascin-C mRNA is expressed in cranial neural crest cells, in some placodal derivatives, and in discrete domains of the embryonic zebrafish brain. Journal of Neurobiology, 1995, 28, 391-407.	3.6	30
25	Live Dissection of Drosophila Embryos: Streamlined Methods for Screening Mutant Collections by Antibody Staining. Journal of Visualized Experiments, 2009, , .	0.3	30
26	Regulation of Synaptic Pumilio Function by an Aggregation-Prone Domain. Journal of Neuroscience, 2010, 30, 515-522.	3.6	30
27	Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling. Development (Cambridge), 2009, 136, 3121-3129.	2.5	26
28	Receptor tyrosine phosphatases regulate birth order-dependent axonal fasciculation and midline repulsion during development of the Drosophila mushroom body. Molecular and Cellular Neurosciences, 2008, 38, 53-65.	2.2	25
29	WASH phosphorylation balances endosomal versus cortical actin network integrities during epithelial morphogenesis. Nature Communications, 2019, 10, 2193.	12.8	24
30	Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9837-9842.	7.1	21
31	Identification and characterization of mushroom body neurons that regulate fat storage in Drosophila. Neural Development, 2018, 13, 18.	2.4	20
32	Targeted mutagenesis and genetic analysis of a Drosophila receptor-linked protein tyrosine phosphatase gene. Roux's Archives of Developmental Biology, 1995, 204, 187-192.	1.2	19
33	Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion molecules. ELife, 2021, 10, .	6.0	16
34	The secreted cell signal Folded Gastrulation regulates glial morphogenesis and axon guidance in Drosophila. Developmental Biology, 2007, 308, 158-168.	2.0	12
35	The Cell Surface Receptor Tartan Is a Potential In Vivo Substrate for the Receptor Tyrosine Phosphatase Ptp52F. Molecular and Cellular Biology, 2009, 29, 3390-3400.	2.3	12
36	The translational regulator Cup controls NMJ presynaptic terminal morphology. Molecular and Cellular Neurosciences, 2015, 67, 126-136.	2.2	12

#	Article	IF	CITATIONS
37	R3 receptor tyrosine phosphatases: Conserved regulators of receptor tyrosine kinase signaling and tubular organ development. Seminars in Cell and Developmental Biology, 2015, 37, 119-126.	5.0	11
38	Systematic Screening of Drosophila Deficiency Mutations for Embryonic Phenotypes and Orphan Receptor Ligands. PLoS ONE, 2010, 5, e12288.	2.5	10
39	Dendritic Tiling. Neuron, 2004, 44, 211-213.	8.1	9
40	Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila. Biology Open, 2012, 1, 548-558.	1.2	9
41	Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Reports, 2022, 39, 110618.	6.4	9
42	Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network. PLoS Computational Biology, 2015, 11, e1004264.	3.2	8
43	Choosing the road less traveled by: a ligand–receptor system that controls target recognition by <i>Drosophila</i> motor axons. Genes and Development, 2009, 23, 1042-1045.	5.9	7
44	Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. ELife, 2022, 11 , .	6.0	7
45	Live Staining of Drosophila Embryos with RPTP Fusion Proteins to Detect and Characterize Expression of Cell-Surface RPTP Ligands. Methods in Molecular Biology, 2016, 1447, 373-384.	0.9	6
46	Modeling and analysis of modular structure in diverse biological networks. Journal of Theoretical Biology, 2017, 422, 18-30.	1.7	6
47	Dscam and Neuronal Uniqueness. Cell, 2007, 129, 455-456.	28.9	4
48	Identification of four Drosophila Toll-related proteins as ligands for the PTP69D receptor tyrosine phosphatase. MicroPublication Biology, 2019, 2019, .	0.1	3
49	Derailed axons get on track. Nature, 1999, 402, 475-476.	27.8	1
50	Visualization of binding patterns for five Leucine-rich repeat proteins in the embryo. MicroPublication Biology, 2019, 2019, .	0.1	1
51	Building a ladder to Hershey Heaven. ELife, 2016, 5, .	6.0	O