
## Graham F Hatfull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5604830/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF                 | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 1  | Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant<br>Mycobacterium abscessus. Nature Medicine, 2019, 25, 730-733.                                                        | 15.2               | 907          |
| 2  | Origins of Highly Mosaic Mycobacteriophage Genomes. Cell, 2003, 113, 171-182.                                                                                                                                  | 13.5               | 609          |
| 3  | Specialized transduction: an efficient method for generating marked and unmarked targeted gene<br>disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology (United) Tj ETQq1 1 ( | 0.7 <b>8</b> 47314 | rgB534Overlo |
| 4  | Recombineering in Mycobacterium tuberculosis. Nature Methods, 2007, 4, 147-152.                                                                                                                                | 9.0                | 477          |
| 5  | Growth of <i>Mycobacterium tuberculosis</i> biofilms containing free mycolic acids and harbouring<br>drugâ€ŧolerant bacteria. Molecular Microbiology, 2008, 69, 164-174.                                       | 1.2                | 454          |
| 6  | A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year<br>Undergraduate Students. MBio, 2014, 5, e01051-13.                                                                    | 1.8                | 424          |
| 7  | Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2000, 299, 27-51.                      | 2.0                | 417          |
| 8  | Bacteriophages and their genomes. Current Opinion in Virology, 2011, 1, 298-303.                                                                                                                               | 2.6                | 397          |
| 9  | Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics, 2011, 12, 395.                                                                                                    | 1.2                | 396          |
| 10 | GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in<br>Mycobacteria. Cell, 2005, 123, 861-873.                                                                     | 13.5               | 379          |
| 11 | The origins and ongoing evolution of viruses. Trends in Microbiology, 2000, 8, 504-508.                                                                                                                        | 3.5                | 348          |
| 12 | Bacteriophage genomics. Current Opinion in Microbiology, 2008, 11, 447-453.                                                                                                                                    | 2.3                | 330          |
| 13 | PhagesDB: the actinobacteriophage database. Bioinformatics, 2017, 33, 784-786.                                                                                                                                 | 1.8                | 310          |
| 14 | Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. ELife, 2015, 4, e06416.                                                                    | 2.8                | 280          |
| 15 | Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene<br>Acquisition, and Gene Size. Journal of Molecular Biology, 2010, 397, 119-143.                                         | 2.0                | 274          |
| 16 | Imbroglios of Viral Taxonomy: Genetic Exchange and Failings of Phenetic Approaches. Journal of<br>Bacteriology, 2002, 184, 4891-4905.                                                                          | 1.0                | 240          |
| 17 | Exploring the Mycobacteriophage Metaproteome: Phage Genomics as an Educational Platform. PLoS<br>Genetics, 2006, 2, e92.                                                                                       | 1.5                | 239          |
| 18 | Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nature Methods, 2006, 3, 615-621.                                                       | 9.0                | 223          |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dark Matter of the Biosphere: the Amazing World of Bacteriophage Diversity. Journal of Virology, 2015, 89, 8107-8110.                                                                                                                        | 1.5  | 198       |
| 20 | Prophage-mediated defence against viral attack and viral counter-defence. Nature Microbiology, 2017, 2, 16251.                                                                                                                               | 5.9  | 196       |
| 21 | Bacteriophage evolution differs by host, lifestyle and genome. Nature Microbiology, 2017, 2, 17112.                                                                                                                                          | 5.9  | 192       |
| 22 | Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus,<br>Neisseria and Deinococcus. Journal of Molecular Biology, 2002, 317, 337-359.                                                             | 2.0  | 188       |
| 23 | The Generalized Transducing Salmonella Bacteriophage ES18: Complete Genome Sequence and DNA<br>Packaging Strategy. Journal of Bacteriology, 2005, 187, 1091-1104.                                                                            | 1.0  | 185       |
| 24 | Genome structure of mycobacteriophage D29: implications for phage evolution 1 1Edited by J. Karn.<br>Journal of Molecular Biology, 1998, 279, 143-164.                                                                                       | 2.0  | 182       |
| 25 | Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annual Review of Medicine, 2022, 73, 197-211.                                                                                                                                   | 5.0  | 182       |
| 26 | Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis.<br>Nature, 1987, 329, 266-268.                                                                                                              | 13.7 | 180       |
| 27 | BRED: A Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes.<br>PLoS ONE, 2008, 3, e3957.                                                                                                                 | 1.1  | 166       |
| 28 | Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Molecular Microbiology, 1993, 7, 407-417.                                                                                          | 1.2  | 161       |
| 29 | A new cell division operon inEscherichia coli. Molecular Genetics and Genomics, 1986, 205, 134-145.                                                                                                                                          | 2.4  | 159       |
| 30 | On the nature of mycobacteriophage diversity and host preference. Virology, 2012, 434, 187-201.                                                                                                                                              | 1.1  | 159       |
| 31 | Genomic and structural analysis of Syn9, a cyanophage infecting<br>marineProchlorococcusandSynechococcus. Environmental Microbiology, 2007, 9, 1675-1695.                                                                                    | 1.8  | 158       |
| 32 | An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research<br>outcomes and student learning. Proceedings of the National Academy of Sciences of the United States<br>of America, 2017, 114, 13531-13536. | 3.3  | 155       |
| 33 | The role of iron in <i>Mycobacterium smegmatis</i> biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Molecular Microbiology, 2007, 66, 468-483.     | 1.2  | 154       |
| 34 | Bacteriophages of <i>Gordonia</i> spp. Display a Spectrum of Diversity and Genetic Relationships.<br>MBio, 2017, 8, .                                                                                                                        | 1.8  | 135       |
| 35 | Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution.<br>PLoS ONE, 2011, 6, e16329.                                                                                                                | 1.1  | 133       |
| 36 | Teaching Scientific Inquiry. Science, 2006, 314, 1880-1881.                                                                                                                                                                                  | 6.0  | 128       |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Efficient point mutagenesis in mycobacteria using singleâ€stranded DNA recombineering:<br>characterization of antimycobacterial drug targets. Molecular Microbiology, 2008, 67, 1094-1107. | 1.2  | 126       |
| 38 | Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Molecular Microbiology, 2009,<br>73, 367-381.                                                                        | 1.2  | 123       |
| 39 | The Orientation of Mycobacteriophage Bxb1 Integration Is Solely Dependent on the Central Dinucleotide of attP and attB. Molecular Cell, 2003, 12, 1101-1111.                               | 4.5  | 122       |
| 40 | Recombineering mycobacteria and their phages. Nature Reviews Microbiology, 2008, 6, 851-857.                                                                                               | 13.6 | 122       |
| 41 | The Î <sup>3</sup> δ resolvase induces an unusual DNA structure at the recombinational crossover point. Cell, 1987,<br>49, 103-110.                                                        | 13.5 | 121       |
| 42 | The crystal structure of the catalytic domain of the site-specific recombination enzyme γδresolvase at 2.7 à resolution. Cell, 1990, 63, 1323-1329.                                        | 13.5 | 121       |
| 43 | Genomic sequence and analysis of the atypical temperate bacteriophage N15 1 1Edited by M. Gottesman.<br>Journal of Molecular Biology, 2000, 299, 53-73.                                    | 2.0  | 121       |
| 44 | The Genome of Bacillus subtilis Bacteriophage SPO1. Journal of Molecular Biology, 2009, 388, 48-70.                                                                                        | 2.0  | 120       |
| 45 | Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor. PLoS Biology, 2006, 4, e186.                                                                                | 2.6  | 118       |
| 46 | Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Molecular<br>Microbiology, 2003, 50, 463-473.                                                              | 1.2  | 117       |
| 47 | Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial<br>Growth in Biofilms. Journal of Biological Chemistry, 2010, 285, 17380-17389.              | 1.6  | 113       |
| 48 | Mycobacteriophage Endolysins: Diverse and Modular Enzymes with Multiple Catalytic Activities. PLoS<br>ONE, 2012, 7, e34052.                                                                | 1.1  | 112       |
| 49 | A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Molecular Microbiology, 2006, 62, 1569-1585. | 1.2  | 110       |
| 50 | Exploring the prokaryotic virosphere. Research in Microbiology, 2008, 159, 306-313.                                                                                                        | 1.0  | 109       |
| 51 | Phage Therapy of <i>Mycobacterium</i> Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clinical Infectious Diseases, 2023, 76, 103-112.   | 2.9  | 109       |
| 52 | A Measure of College Student Persistence in the Sciences (PITS). CBE Life Sciences Education, 2016, 15, ar54.                                                                              | 1.1  | 106       |
| 53 | The Secret Lives of Mycobacteriophages. Advances in Virus Research, 2012, 82, 179-288.                                                                                                     | 0.9  | 103       |
| 54 | Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis. MBio, 2013, 4, e00222-13.                                                   | 1.8  | 103       |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mycobacteriophages: Genes and Genomes. Annual Review of Microbiology, 2010, 64, 331-356.                                                                                                                                 | 2.9  | 101       |
| 56 | Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Molecular Microbiology, 1993, 8, 277-285.                                                         | 1.2  | 98        |
| 57 | The pKO2 Linear Plasmid Prophage of Klebsiella oxytoca. Journal of Bacteriology, 2004, 186, 1818-1832.                                                                                                                   | 1.0  | 98        |
| 58 | Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary<br>Mycobacterium abscessus infection. Nature Medicine, 2021, 27, 1357-1361.                                                        | 15.2 | 94        |
| 59 | Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of<br>Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e4870.                                                                | 1.1  | 94        |
| 60 | Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185, 1860-1874.e12.                                                                                   | 13.5 | 93        |
| 61 | Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: A "Horned―<br>Bacteriophage of Marine Synechococcus. Journal of Molecular Biology, 2007, 368, 966-981.                             | 2.0  | 92        |
| 62 | Mycobacterial Recombineering. Methods in Molecular Biology, 2008, 435, 203-215.                                                                                                                                          | 0.4  | 92        |
| 63 | Evaluation of a Transposase Protocol for Rapid Generation of Shotgun High-Throughput Sequencing<br>Libraries from Nanogram Quantities of DNA. Applied and Environmental Microbiology, 2011, 77,<br>8071-8079.            | 1.4  | 89        |
| 64 | Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates. MBio, 2012, 3, .                                                                    | 1.8  | 89        |
| 65 | Recombineering. Bacteriophage, 2012, 2, 5-14.                                                                                                                                                                            | 1.9  | 88        |
| 66 | Bacteriophages with tails: chasing their origins and evolution. Research in Microbiology, 2003, 154, 253-257.                                                                                                            | 1.0  | 87        |
| 67 | Synapsis in Phage Bxb1 Integration: Selection Mechanism for the Correct Pair of Recombination Sites.<br>Journal of Molecular Biology, 2005, 349, 331-348.                                                                | 2.0  | 87        |
| 68 | Cooperativity mutants of the γδ resolvase identify an essential interdimer interaction. Cell, 1990, 63,<br>1331-1338.                                                                                                    | 13.5 | 86        |
| 69 | Genomic Characterization of Mycobacteriophage Giles: Evidence for Phage Acquisition of Host DNA by<br>Illegitimate Recombination. Journal of Bacteriology, 2008, 190, 2172-2182.                                         | 1.0  | 86        |
| 70 | Rapid Film-Based Determination of Antibiotic Susceptibilities of Mycobacterium tuberculosis Strains<br>by Using a Luciferase Reporter Phage and the Bronx Box. Journal of Clinical Microbiology, 1999, 37,<br>1144-1149. | 1.8  | 86        |
| 71 | Actinobacteriophages: Genomics, Dynamics, and Applications. Annual Review of Virology, 2020, 7, 37-61.                                                                                                                   | 3.0  | 85        |
| 72 | Complete Genomic Sequence of the Virulent Salmonella Bacteriophage SP6. Journal of Bacteriology,<br>2004, 186, 1933-1944.                                                                                                | 1.0  | 84        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology (United Kingdom), 2007, 153, 2711-2723.               | 0.7 | 83        |
| 74 | Genome organization and characterization of mycobacteriophage Bxb1. Molecular Microbiology, 2002, 38, 955-970.                                                                                                                        | 1.2 | 81        |
| 75 | Exponential-Phase Glycogen Recycling Is Essential for Growth of <i>Mycobacterium smegmatis</i> .<br>Journal of Bacteriology, 1999, 181, 6670-6678.                                                                                    | 1.0 | 81        |
| 76 | Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO Journal, 1997, 16, 5914-5921.                                                                                                                                   | 3.5 | 79        |
| 77 | Mycobacteriophages: Windows into Tuberculosis. PLoS Pathogens, 2014, 10, e1003953.                                                                                                                                                    | 2.1 | 79        |
| 78 | Mobilization of the non-conjugative plasmid RSF1010: A genetic and DNA sequence analysis of the mobilization region. Molecular Genetics and Genomics, 1987, 206, 161-168.                                                             | 2.4 | 75        |
| 79 | Integration-Dependent Bacteriophage Immunity Provides Insights into the Evolution of Genetic<br>Switches. Molecular Cell, 2013, 49, 237-248.                                                                                          | 4.5 | 75        |
| 80 | Molecular Genetics of Mycobacteriophages. Microbiology Spectrum, 2014, 2, .                                                                                                                                                           | 1.2 | 74        |
| 81 | Integration and excision by the large serine recombinase φRv1 integrase. Molecular Microbiology, 2005, 55, 1896-1910.                                                                                                                 | 1.2 | 73        |
| 82 | Do mycobacteria produce endospores?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 878-881.                                                                                             | 3.3 | 73        |
| 83 | Mycobacteriophages. Microbiology Spectrum, 2018, 6, .                                                                                                                                                                                 | 1.2 | 72        |
| 84 | Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft<br>Mist Inhaler. Pharmaceutical Research, 2017, 34, 2084-2096.                                                                  | 1.7 | 71        |
| 85 | Integration and excision of the Mycobacterium tuberculosis prophage-like element, φRv1. Molecular<br>Microbiology, 2002, 45, 1515-1526.                                                                                               | 1.2 | 70        |
| 86 | Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Research in Microbiology, 2008, 159, 332-339.                                                                                                  | 1.0 | 70        |
| 87 | Ï• <sup>2</sup> GFP10, a High-Intensity Fluorophage, Enables Detection and Rapid Drug Susceptibility<br>Testing of Mycobacterium tuberculosis Directly from Sputum Samples. Journal of Clinical<br>Microbiology, 2012, 50, 1362-1369. | 1.8 | 69        |
| 88 | Complete Genome Sequences of 138 Mycobacteriophages. Journal of Virology, 2012, 86, 2382-2384.                                                                                                                                        | 1.5 | 69        |
| 89 | Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria.<br>Gene, 1996, 183, 129-136.                                                                                                       | 1.0 | 68        |
| 90 | Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Molecular Microbiology,<br>1995, 17, 1045-1056.                                                                                                            | 1.2 | 65        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Characterization of the mycobacteriophage L5 attachment site, attP 1 1 Edited by M. Gottesman. Journal of Molecular Biology, 1997, 266, 76-92.                                                                                                    | 2.0 | 65        |
| 92  | Corrected Sequence of the Bacteriophage P22 Genome. Journal of Bacteriology, 2003, 185, 1475-1477.                                                                                                                                                | 1.0 | 65        |
| 93  | Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7419-7424.                           | 3.3 | 63        |
| 94  | 7-Deazaguanine modifications protect phage DNA from host restriction systems. Nature Communications, 2019, 10, 5442.                                                                                                                              | 5.8 | 63        |
| 95  | More Evidence of Collusion: a New Prophage-Mediated Viral Defense System Encoded by<br>Mycobacteriophage Sbash. MBio, 2019, 10, .                                                                                                                 | 1.8 | 60        |
| 96  | Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4.<br>PLoS ONE, 2011, 6, e26750.                                                                                                                      | 1.1 | 60        |
| 97  | Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of<br>Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. MBio, 2021, 12, .                                                                 | 1.8 | 56        |
| 98  | Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nature Communications, 2022, 13, 2313.                                                                                                                        | 5.8 | 56        |
| 99  | Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiology Letters, 2004, 241, 271-276.                                                                                                                                        | 0.7 | 55        |
| 100 | Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage <scp>G</scp> iles. Molecular Microbiology, 2013, 88, 577-589.                                                                             | 1.2 | 53        |
| 101 | Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology (United Kingdom), 2009, 155, 2962-2977.                                                                   | 0.7 | 53        |
| 102 | Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. Journal of Medical Microbiology, 2003, 52, 557-561.                                                 | 0.7 | 52        |
| 103 | Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA<br>Isotypes. Journal of Virology, 2014, 88, 2461-2480.                                                                                               | 1.5 | 52        |
| 104 | Evolution of Superinfection Immunity in Cluster A Mycobacteriophages. MBio, 2019, 10, .                                                                                                                                                           | 1.8 | 52        |
| 105 | Snapshot of haloarchaeal tailed virus genomes. RNA Biology, 2013, 10, 803-816.                                                                                                                                                                    | 1.5 | 51        |
| 106 | Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS ONE, 2020, 15, e0234636.                                                                                                                                                   | 1.1 | 50        |
| 107 | Control of Directionality in L5 Integrase-mediated Site-specific Recombination. Journal of Molecular<br>Biology, 2003, 326, 805-821.                                                                                                              | 2.0 | 49        |
| 108 | Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3238-3243. | 3.3 | 49        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics, 2019, 20, 357.                                                                            | 1.2 | 49        |
| 110 | Prophylaxis of Mycobacterium tuberculosis H37Rv Infection in a Preclinical Mouse Model via<br>Inhalation of Nebulized Bacteriophage D29. Antimicrobial Agents and Chemotherapy, 2019, 63, . | 1.4 | 48        |
| 111 | Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science, 2021, 372, 520-524.                                                                                            | 6.0 | 46        |
| 112 | Mycobacteriophage Exploit NHEJ to Facilitate Genome Circularization. Molecular Cell, 2006, 23, 743-748.                                                                                     | 4.5 | 45        |
| 113 | Genetic transformation of mycobacteria. Trends in Microbiology, 1993, 1, 310-314.                                                                                                           | 3.5 | 44        |
| 114 | Mycobacteriophages. , 1998, 101, 145-174.                                                                                                                                                   |     | 44        |
| 115 | Molecular Genetics of Mycobacteriophages. Microbiology Spectrum, 2014, 2, 1-36.                                                                                                             | 1.2 | 44        |
| 116 | Mycobacteriophage L5 infection of Mycobacterium bovis BCG: implications for phage genetics in the slowâ€growing mycobacteria. Molecular Microbiology, 1997, 26, 755-766.                    | 1.2 | 43        |
| 117 | Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of<br>Therapeutically Useful Phages, and Phage Resistance. MBio, 2021, 12, .                      | 1.8 | 43        |
| 118 | Identification and characterization of mycobacteriophage L5 excisionase. Molecular Microbiology, 2000, 35, 350-360.                                                                         | 1.2 | 42        |
| 119 | Unlocking the Potential of 46 New Bacteriophages for Biocontrol of Dickeya Solani. Viruses, 2018, 10, 621.                                                                                  | 1.5 | 42        |
| 120 | Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the Mycobacterium<br>Neighborhood. MBio, 2014, 5, e02145.                                                   | 1.8 | 39        |
| 121 | Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS<br>ONE, 2017, 12, e0180517.                                                            | 1.1 | 38        |
| 122 | Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection.<br>Molecular Microbiology, 2018, 108, 443-460.                                           | 1.2 | 38        |
| 123 | Yet More Evidence of Collusion: a New Viral Defense System Encoded by <i>Gordonia</i> Phage CarolAnn. MBio, 2019, 10, .                                                                     | 1.8 | 38        |
| 124 | Characterization of a Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Molecular Microbiology, 1996, 21, 159-170.                              | 1.2 | 37        |
| 125 | Evaluation of Fluoromycobacteriophages for Detecting Drug Resistance in Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2011, 49, 1838-1842.                                  | 1.8 | 37        |
| 126 | Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp. Journal of Bacteriology, 2013, 195, 4924-4935.                                      | 1.0 | 37        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Attachment Site Selection and Identity in Bxb1 Serine Integrase-Mediated Site-Specific Recombination.<br>PLoS Genetics, 2013, 9, e1003490.                                                                | 1.5 | 37        |
| 128 | Innovations in Undergraduate Science Education: Going Viral. Journal of Virology, 2015, 89, 8111-8113.                                                                                                    | 1.5 | 36        |
| 129 | Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis, 2019, 115, 14-23.                                                                                       | 0.8 | 35        |
| 130 | Mycobacteriophages: From Petri dish to patient. PLoS Pathogens, 2022, 18, e1010602.                                                                                                                       | 2.1 | 35        |
| 131 | CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Scientific Reports, 2021, 11, 6796.                                                                                                     | 1.6 | 34        |
| 132 | The Prophage and Plasmid Mobilome as a Likely Driver of Mycobacterium abscessus Diversity. MBio, 2021, 12, .                                                                                              | 1.8 | 32        |
| 133 | Molecular Genetics of Mycobacteriophages. , 0, , 81-119.                                                                                                                                                  |     | 32        |
| 134 | Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage<br>Production in Mycobacteria. Journal of Bacteriology, 2016, 198, 3220-3232.                            | 1.0 | 31        |
| 135 | Transcriptional regulation and immunity in mycobacteriophage Bxb1. Molecular Microbiology, 2002, 38, 971-985.                                                                                             | 1.2 | 30        |
| 136 | Measuring Networking as an Outcome Variable in Undergraduate Research Experiences. CBE Life<br>Sciences Education, 2015, 14, ar38.                                                                        | 1.1 | 30        |
| 137 | Function, expression, specificity, diversity and incompatibility of actinobacteriophage <i>parABS</i> systems. Molecular Microbiology, 2016, 101, 625-644.                                                | 1.2 | 29        |
| 138 | Successive and Targeted DNA Integrations in the <i>Drosophila</i> Genome by Bxb1 and φC31 Integrases.<br>Genetics, 2011, 189, 391-395.                                                                    | 1.2 | 28        |
| 139 | Reporter Phage and Breath Tests: Emerging Phenotypic Assays for Diagnosing Active Tuberculosis,<br>Antibiotic Resistance, and Treatment Efficacy. Journal of Infectious Diseases, 2011, 204, S1142-S1150. | 1.9 | 28        |
| 140 | Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes. PLoS ONE, 2013, 8, e69273.                                                                                                        | 1.1 | 28        |
| 141 | Characterization of the dnaG Locus in Mycobacterium smegmatis Reveals Linkage of DNA Replication and Cell Division. Journal of Bacteriology, 1998, 180, 65-72.                                            | 1.0 | 27        |
| 142 | Characterization and induction of prophages in human gut-associated Bifidobacterium hosts.<br>Scientific Reports, 2018, 8, 12772.                                                                         | 1.6 | 26        |
| 143 | Characterization of the mIHF Gene of Mycobacterium smegmatis. Journal of Bacteriology, 1998, 180, 5473-5477.                                                                                              | 1.0 | 26        |
| 144 | Remote control of DNA-acting enzymes by varying the Brownian dynamics of a distant DNA end.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16546-16551.   | 3.3 | 25        |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Mycobacteriophage Marvin: a New Singleton Phage with an Unusual Genome Organization. Journal of<br>Virology, 2012, 86, 4762-4775.                                                      | 1.5  | 25        |
| 146 | Complete Genome Sequences of 63 Mycobacteriophages. Genome Announcements, 2013, 1, .                                                                                                   | 0.8  | 25        |
| 147 | Enhanced Specialized Transduction Using Recombineering in Mycobacterium tuberculosis. MBio, 2014, 5, e01179-14.                                                                        | 1.8  | 25        |
| 148 | Genome Sequence of Salmonella Phage χ. Genome Announcements, 2015, 3, .                                                                                                                | 0.8  | 25        |
| 149 | Expression and evolutionary patterns of mycobacteriophage D29 and its temperate close relatives.<br>BMC Microbiology, 2017, 17, 225.                                                   | 1.3  | 24        |
| 150 | Uncoupling of the recombination and topoisomerase activities of the Î <sup>3</sup> δ resolvase by a mutation at the crossover point. Nature, 1988, 332, 861-863.                       | 13.7 | 23        |
| 151 | The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication. Gene, 2012, 495, 42-48.                              | 1.0  | 23        |
| 152 | The sequence of the distal end of theE. coliribosomal RNA rrnE operon indicates conserved features are shared by rrn operons. Nucleic Acids Research, 1985, 13, 5515-5525.             | 6.5  | 22        |
| 153 | Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene, 1998, 225, 143-151.                                                        | 1.0  | 22        |
| 154 | Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis. Applied and Environmental Microbiology, 2014, 80, 7107-7121.      | 1.4  | 22        |
| 155 | Comparative Genomics of Cluster O Mycobacteriophages. PLoS ONE, 2015, 10, e0118725.                                                                                                    | 1.1  | 22        |
| 156 | Characterization of prophages containing "evolved―Dit/Tal modules in the genome of Lactobacillus<br>casei BL23. Applied Microbiology and Biotechnology, 2016, 100, 9201-9215.          | 1.7  | 22        |
| 157 | Mycobacteriophage–antibiotic therapy promotes enhanced clearance of drug-resistant<br><i>Mycobacterium abscessus</i> . DMM Disease Models and Mechanisms, 2021, 14, .                  | 1.2  | 22        |
| 158 | Genetic Dissection of Mycobacterial Biofilms. Methods in Molecular Biology, 2015, 1285, 215-226.                                                                                       | 0.4  | 22        |
| 159 | Protein-DNA Complexes in Mycobacteriophage L5 Integrative Recombination. Journal of Bacteriology, 1999, 181, 454-461.                                                                  | 1.0  | 22        |
| 160 | Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP. FEMS<br>Microbiology Letters, 2013, 344, 166-172.                                          | 0.7  | 21        |
| 161 | Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. Microbiology (United Kingdom), 2015, 161, 1539-1551.              | 0.7  | 21        |
| 162 | Characterization of a Mycobacterium smegmatis Mutant That Is Simultaneously Resistant to d<br>-Cycloserine and Vancomycin. Antimicrobial Agents and Chemotherapy, 2000, 44, 1701-1704. | 1.4  | 20        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A Mycobacterial Systems Resource for the Research Community. MBio, 2021, 12, .                                                                                                                        | 1.8 | 20        |
| 164 | Genetic Analysis of Peptidoglycan Biosynthesis in Mycobacteria: Characterization of a ddlA Mutant of Mycobacterium smegmatis. Journal of Bacteriology, 2000, 182, 6854-6856.                          | 1.0 | 19        |
| 165 | Temperature-dependent Regulation of Mycolic Acid Cyclopropanation in Saprophytic Mycobacteria.<br>Journal of Biological Chemistry, 2010, 285, 21698-21707.                                            | 1.6 | 19        |
| 166 | Generation of Affinity-Tagged Fluoromycobacteriophages by Mixed Assembly of Phage Capsids. Applied and Environmental Microbiology, 2013, 79, 5608-5615.                                               | 1.4 | 18        |
| 167 | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic<br>Rifampicin Resistance in 3–5 Days From Sputum Collection. Frontiers in Microbiology, 2018, 9, 1471. | 1.5 | 18        |
| 168 | The Structure of Xis Reveals the Basis for Filament Formation and Insight into DNA Bending within a Mycobacteriophage Intasome. Journal of Molecular Biology, 2014, 426, 412-422.                     | 2.0 | 17        |
| 169 | Mycobacteriophages: Cornerstones of Mycobacterial Research. , 0, , 163-183.                                                                                                                           |     | 17        |
| 170 | Genome Sequence of <i>Salmonella</i> Phage 9NA. Genome Announcements, 2014, 2, .                                                                                                                      | 0.8 | 16        |
| 171 | The Protein Interactome of Mycobacteriophage Giles Predicts Functions for Unknown Proteins.<br>Journal of Bacteriology, 2015, 197, 2508-2516.                                                         | 1.0 | 16        |
| 172 | Genome Sequence of Salmonella enterica Phage Det7. Genome Announcements, 2015, 3, .                                                                                                                   | 0.8 | 16        |
| 173 | Protein-Mediated and RNA-Based Origins of Replication of Extrachromosomal Mycobacterial<br>Prophages. MBio, 2020, 11, .                                                                               | 1.8 | 16        |
| 174 | Mycobacteriophages to Treat Tuberculosis: Dream or Delusion?. Respiration, 2022, 101, 1-15.                                                                                                           | 1.2 | 16        |
| 175 | Virus-host protein-protein interactions of mycobacteriophage Giles. Scientific Reports, 2017, 7, 16514.                                                                                               | 1.6 | 15        |
| 176 | Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Scientific Reports, 2020, 10, 14670.                                                 | 1.6 | 15        |
| 177 | Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment.<br>Microorganisms, 2021, 9, 2366.                                                                            | 1.6 | 15        |
| 178 | The cohesive ends of mycobacteriophage L5 DNA. Nucleic Acids Research, 1992, 20, 3251-3251.                                                                                                           | 6.5 | 14        |
| 179 | Cross-talk between Diverse Serine Integrases. Journal of Molecular Biology, 2014, 426, 318-331.                                                                                                       | 2.0 | 14        |
| 180 | Crossover-site sequence and DNA torsional stress control strand interchanges by the Bxb1 site-specific serine recombinase. Nucleic Acids Research, 2016, 44, 8921-8932.                               | 6.5 | 14        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Structures of Three Actinobacteriophage Capsids: Roles of Symmetry and Accessory Proteins. Viruses, 2020, 12, 294.                                                                                                       | 1.5 | 14        |
| 182 | Rapid Whole-Cell Assay of Antitubercular Drugs Using Second-Generation Fluoromycobacteriophages.<br>Antimicrobial Agents and Chemotherapy, 2016, 60, 3253-3256.                                                          | 1.4 | 13        |
| 183 | Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. BMC Microbiology, 2018, 18, 19.           | 1.3 | 13        |
| 184 | Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. Methods in Molecular Biology, 2019, 1898, 69-80.                                                             | 0.4 | 13        |
| 185 | Bacteriophage Research: Gateway to Learning Science. Microbe Magazine, 2010, 5, 243-250.                                                                                                                                 | 0.4 | 13        |
| 186 | DEPhT: a novel approach for efficient prophage discovery and precise extraction. Nucleic Acids Research, 2022, 50, e75-e75.                                                                                              | 6.5 | 13        |
| 187 | Evolution of genetic switch complexity. Bacteriophage, 2013, 3, e24186.                                                                                                                                                  | 1.9 | 12        |
| 188 | Mutational Analysis of the Mycobacteriophage BPs Promoter PR Reveals Context-Dependent Sequences<br>for Mycobacterial Gene Expression. Journal of Bacteriology, 2014, 196, 3589-3597.                                    | 1.0 | 12        |
| 189 | An Unusual Phage Repressor Encoded by Mycobacteriophage BPs. PLoS ONE, 2015, 10, e0137187.                                                                                                                               | 1.1 | 12        |
| 190 | Adding pieces to the puzzle: New insights into bacteriophage diversity from integrated research-education programs. Bacteriophage, 2015, 5, e1084073.                                                                    | 1.9 | 12        |
| 191 | Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo<br>Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC<br>Microbiology, 2016, 16, 111. | 1.3 | 12        |
| 192 | Complete Genome Sequence of Microbacterium foliorum NRRL B-24224, a Host for Bacteriophage<br>Discovery. Microbiology Resource Announcements, 2019, 8, .                                                                 | 0.3 | 12        |
| 193 | Complete Genome Sequence of Arthrobacter sp. ATCC 21022, a Host for Bacteriophage Discovery.<br>Genome Announcements, 2016, 4, .                                                                                         | 0.8 | 11        |
| 194 | pdm_utils: a SEA-PHAGES MySQL phage database management toolkit. Bioinformatics, 2021, 37, 2464-2466.                                                                                                                    | 1.8 | 11        |
| 195 | Nebulized Bacteriophage in a Patient With Refractory <i>Mycobacterium abscessus</i> Lung Disease.<br>Open Forum Infectious Diseases, 2022, 9, .                                                                          | 0.4 | 10        |
| 196 | PHIRE andTWiV: Experiences in Bringing Virology to New Audiences. Annual Review of Virology, 2014, 1, 37-53.                                                                                                             | 3.0 | 8         |
| 197 | Complete Genome Sequences of 61 Mycobacteriophages. Genome Announcements, 2016, 4, .                                                                                                                                     | 0.8 | 8         |
| 198 | Brujita Integrase: A Simple, Arm-Less, Directionless, and Promiscuous Tyrosine Integrase System.<br>Journal of Molecular Biology, 2016, 428, 2289-2306.                                                                  | 2.0 | 7         |

| #   | Article                                                                                                                                                                                              | IF                     | CITATIONS   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|
| 199 | Complete Genome Sequences of 38 Gordonia sp. Bacteriophages. Genome Announcements, 2017, 5, .                                                                                                        | 0.8                    | 7           |
| 200 | Genome analysis of <i>Salmonella enterica</i> serovar Typhimurium bacteriophage L, indicator for StySA (StyLT2III) restriction-modification system action. G3: Genes, Genomes, Genetics, 2021, 11, . | 0.8                    | 7           |
| 201 | MICROBIOLOGY: The Great Escape. Science, 2001, 292, 2263-2264.                                                                                                                                       | 6.0                    | 7           |
| 202 | Instructional Models for Course-Based Research Experience (CRE) Teaching. CBE Life Sciences Education, 2022, 21, ar8.                                                                                | 1.1                    | 7           |
| 203 | A putative ABC-transport operon of Mycobacterium smegmatis. Gene, 1997, 185, 127-132.                                                                                                                | 1.0                    | 6           |
| 204 | Complete Genome Sequence of Gordonia terrae 3612. Genome Announcements, 2016, 4, .                                                                                                                   | 0.8                    | 6           |
| 205 | Fluoromycobacteriophages for Drug Susceptibility Testing (DST) of Mycobacteria. Methods in<br>Molecular Biology, 2019, 1898, 27-36.                                                                  | 0.4                    | 6           |
| 206 | Genome Sequence of Mycobacterium abscessus Phage phiT46-1. Microbiology Resource<br>Announcements, 2021, 10, .                                                                                       | 0.3                    | 6           |
| 207 | A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display.<br>Microorganisms, 2021, 9, 2414.                                                                             | 1.6                    | 6           |
| 208 | Genome Sequences of 19 Rhodococcus erythropolis Cluster CA Phages. Genome Announcements, 2017,<br>5, .                                                                                               | 0.8                    | 5           |
| 209 | Wildy Prize Lecture, 2020–2021: Who wouldn't want to discover a new virus?. Microbiology (United) Tj E                                                                                               | TQg1 <sub>7</sub> 1 0. | 784314 rgBT |
| 210 | Genome Sequences of Mycobacteriophages AlanGrant, Baee, Corofin, OrangeOswald, and Vincenzo,<br>New Members of Cluster B. Genome Announcements, 2015, 3, .                                           | 0.8                    | 4           |
| 211 | A Diversified Portfolio. Annual Review of Virology, 2016, 3, vi-viii.                                                                                                                                | 3.0                    | 4           |
| 212 | Genome Sequences of Mycobacteriophages Kerberos, Pomar16, and StarStuff. Genome Announcements, 2017, 5, .                                                                                            | 0.8                    | 3           |
| 213 | Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk,<br>MyraDee, Stagni, and StepMih. Genome Announcements, 2017, 5, .                                          | 0.8                    | 3           |
| 214 | Complete Genome Sequences of 44 Arthrobacter Phages. Genome Announcements, 2018, 6, .                                                                                                                | 0.8                    | 3           |
| 215 | Mycobacteriophages. , 0, , 1029-1055.                                                                                                                                                                |                        | 3           |
| 216 | Set Phages to Kill: An Interview with Graham Hatfull, PhD. Phage, 2020, 1, 4-9.                                                                                                                      | 0.8                    | 3           |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Genome Sequences of 20 Bacteriophages Isolated on Gordonia terrae. Microbiology Resource<br>Announcements, 2020, 9, .                                                  | 0.3 | 3         |
| 218 | Complete Genome Sequences of Lambdoid Phages 21, 434, and 434B and Several Lambda Hybrids.<br>Microbiology Resource Announcements, 2022, 11, e0012022.                 | 0.3 | 3         |
| 219 | MICROBIOLOGY: A Tail of Two Specifi-cities. Science, 2002, 295, 2031-2032.                                                                                             | 6.0 | 2         |
| 220 | Genome Sequence of a Newly Isolated Mycobacteriophage, ShedlockHolmes. Genome Announcements, 2015, 3, .                                                                | 0.8 | 2         |
| 221 | Genome Sequences of Gordonia Phages Bowser and Schwabeltier. Genome Announcements, 2016, 4, .                                                                          | 0.8 | 2         |
| 222 | Genome Sequences of <i>Gordonia</i> Bacteriophages Obliviate, UmaThurman, and Guacamole.<br>Genome Announcements, 2016, 4, .                                           | 0.8 | 2         |
| 223 | Genome Sequences of Chancellor, Mitti, and Wintermute, Three Subcluster K4 Phages Isolated Using<br>Mycobacterium smegmatis mc 2 155. Genome Announcements, 2017, 5, . | 0.8 | 2         |
| 224 | Roger Hendrix: Gentle Provocateur. Journal of Bacteriology, 2018, 200, .                                                                                               | 1.0 | 2         |
| 225 | Eight Genome Sequences of Cluster BE1 Phages That Infect <i>Streptomyces</i> Species. Genome Announcements, 2018, 6, .                                                 | 0.8 | 2         |
| 226 | Genome Sequence of Mycobacterium abscessus Phage phiT45-1. Microbiology Resource<br>Announcements, 2021, 10, .                                                         | 0.3 | 2         |
| 227 | Genome Sequences of Cluster G Mycobacteriophages Cambiare, FlagStaff, and MOOREtheMARYer.<br>Genome Announcements, 2015, 3, .                                          | 0.8 | 1         |
| 228 | Genome Sequences of Gordonia terrae Phages Benczkowski14 and Katyusha. Genome Announcements, 2016, 4, .                                                                | 0.8 | 1         |
| 229 | Genome Sequences of Gordonia Phages BaxterFox, Kita, Nymphadora, and Yeezy. Genome<br>Announcements, 2016, 4, .                                                        | 0.8 | 1         |
| 230 | Genome Sequence of Gordonia Phage BetterKatz. Genome Announcements, 2016, 4, .                                                                                         | 0.8 | 1         |
| 231 | Genome Sequence of Gordonia Phage Emalyn. Genome Announcements, 2016, 4, .                                                                                             | 0.8 | 1         |
| 232 | Genome Sequences of <i>Gordonia</i> Phages Hotorobo, Woes, and Monty. Genome Announcements, 2016, 4, .                                                                 | 0.8 | 1         |
| 233 | Genome Sequences of Gordonia terrae Phages Attis and SoilAssassin. Genome Announcements, 2016, 4,                                                                      | 0.8 | 1         |
| 234 | Genome Sequence of Gordonia Phage Yvonnetastic. Genome Announcements, 2016, 4, .                                                                                       | 0.8 | 1         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Genome Sequences of <i>Gordonia terrae</i> Bacteriophages Phinally and Vivi2. Genome<br>Announcements, 2016, 4, .                                                                                                 | 0.8 | 1         |
| 236 | Genome Sequence of <i>Gordonia</i> Bacteriophage Lucky10. Genome Announcements, 2016, 4, .                                                                                                                        | 0.8 | 1         |
| 237 | Genome Sequence of Mycobacterium Phage CrystalP. Genome Announcements, 2017, 5, .                                                                                                                                 | 0.8 | 1         |
| 238 | Genome Sequences of Four Subcluster L2 Mycobacterium Phages, Finemlucis, Miley16, Wilder, and Zakai. Genome Announcements, 2017, 5, .                                                                             | 0.8 | 1         |
| 239 | Genome Sequences of Mycobacteriophages Amgine, Amohnition, Bella96, Cain, DarthP, Hammy, Krueger,<br>LastHope, Peanam, PhelpsODU, Phrank, SirPhilip, Slimphazie, and Unicorn. Genome Announcements,<br>2017, 5, . | 0.8 | 1         |
| 240 | Genome Sequences of Three Cluster AU Arthrobacter Phages, Caterpillar, Nightmare, and Teacup.<br>Genome Announcements, 2017, 5, .                                                                                 | 0.8 | 1         |
| 241 | Genome Sequences of Four Cluster P Mycobacteriophages. Genome Announcements, 2018, 6, .                                                                                                                           | 0.8 | 1         |
| 242 | What can Mycobacteriophages Tell Us About Mycobacterium tuberculosis?. , 2008, , 67-76.                                                                                                                           |     | 1         |
| 243 | Genetics of Phage Lysis. , 0, , 121-133.                                                                                                                                                                          |     | 1         |
| 244 | Mycobacterial Biofilms. , 0, , 773-784.                                                                                                                                                                           |     | 1         |
| 245 | 9 Genetic Methods in Mycobacteria. Methods in Microbiology, 1999, 29, 251-276.                                                                                                                                    | 0.4 | Ο         |
| 246 | Genome Sequence of Mycobacteriophage Mindy. Genome Announcements, 2015, 3, .                                                                                                                                      | 0.8 | 0         |
| 247 | Genome Sequence of Mycobacteriophage Phayonce. Genome Announcements, 2015, 3, .                                                                                                                                   | 0.8 | Ο         |
| 248 | Genome Sequences of Mycobacteriophages Luchador and Nerujay. Genome Announcements, 2015, 3, .                                                                                                                     | 0.8 | 0         |
| 249 | Genome Sequences of Newly Isolated Mycobacteriophages Forming Cluster S. Genome<br>Announcements, 2016, 4, .                                                                                                      | 0.8 | Ο         |
| 250 | In the Trenches of Microbial Warfare: Identification of Genes and Pathways Contributing to<br>Bacteriophage Infection by Quantitative Selection Analysis. Journal of Molecular Biology, 2016, 428,<br>413-415.    | 2.0 | 0         |
| 251 | Genome Sequences of 12 Cluster AN Arthrobacter Phages. Genome Announcements, 2017, 5, .                                                                                                                           | 0.8 | 0         |
| 252 | Complete Genome Sequences of Mycobacteriophages Clautastrophe, Kingsolomon, Krypton555, and<br>Nicholas. Genome Announcements, 2017, 5, .                                                                         | 0.8 | 0         |

| #   | Article                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Genome Sequences of Mycobacteriophages Findley, Hurricane, and TBond007. Genome Announcements, 2017, 5, .                                         | 0.8 | 0         |
| 254 | Complete Genome Sequences of <i>Arthrobacter</i> Phages Beans, Franzy, Jordan, Piccoletto, Shade, and Timinator. Genome Announcements, 2017, 5, . | 0.8 | 0         |
| 255 | Genome Sequences of Subcluster K5 Mycobacteriophages AlleyCat, Edugator, and Guillsminger.<br>Genome Announcements, 2017, 5, .                    | 0.8 | 0         |
| 256 | Genome Sequences of Three Microbacterium Phages Isolated from Flowers. Microbiology Resource Announcements, 2019, 8, .                            | 0.3 | 0         |
| 257 | Bacteriophage Discovery and Genomics. , 2021, , 219-230.                                                                                          |     | 0         |
| 258 | L5-like Viruses. , 2011, , 1803-1810.                                                                                                             |     | 0         |
| 259 | Genetic Manipulations Using Phages. , 0, , 825-837.                                                                                               |     | 0         |
| 260 | Mycobacteriophages: Pathogenesis and Applications. , 0, , 238-255.                                                                                |     | 0         |
| 261 | The Spectrum of Drug Susceptibility in Mycobacteria. , 0, , 709-725.                                                                              |     | 0         |
| 262 | Gene Transfer inMycobacterium tuberculosis: Shuttle Phasmids to Enlightenment. , 0, , 1-25.                                                       |     | 0         |
| 263 | Genetics of Peptidoglycan Biosynthesis. , 0, , 511-533.                                                                                           |     | 0         |
| 264 | Bacteriophage Discovery and Genomics. , 2017, , 1-13.                                                                                             |     | 0         |