
Jean-Emmanuel Sarry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5604148/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discovery, 2017, 7, 716-735.	9.4	582
2	The early responses ofArabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006, 6, 2180-2198.	2.2	348
3	Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2RI³c-deficient mice. Journal of Clinical Investigation, 2011, 121, 384-395.	8.2	336
4	Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 2016, 128, 253-264.	1.4	320
5	Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chemistry, 2004, 87, 509-521.	8.2	222
6	High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica, 2011, 96, 1792-1798.	3.5	164
7	Metformin Inhibits Growth of Human Glioblastoma Cells and Enhances Therapeutic Response. PLoS ONE, 2015, 10, e0123721.	2.5	151
8	Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment. Cell Metabolism, 2017, 26, 705-707.	16.2	140
9	Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics, 2004, 4, 201-215.	2.2	136
10	Assessment of tumor-infiltrating TCRV γ 9V δ 2 γ´ lymphocyte abundance by deconvolution of human cancers microarrays. Oncolmmunology, 2017, 6, e1284723.	4.6	134
11	A robust xenotransplantation model for acute myeloid leukemia. Leukemia, 2009, 23, 2109-2117.	7.2	113
12	Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia, 2013, 27, 2129-2138.	7.2	108
13	Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood, 2016, 127, 882-892.	1.4	108
14	High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia, 2017, 31, 2326-2335.	7.2	106
15	Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Molecular Cell, 2016, 62, 890-902.	9.7	96
16	Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nature Communications, 2020, 11, 4056.	12.8	96
17	The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs. Cell Reports, 2014, 7, 1815-1823.	6.4	86
18	Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nature Communications, 2017, 8, 1903.	12.8	84

JEAN-EMMANUEL SARRY

#	Article	IF	CITATIONS
19	Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia. Oncogene, 2018, 37, 787-797.	5.9	82
20	Metabolomic, proteomic andÂbiophysical analyses ofÂArabidopsisÂthaliana cells exposed toÂaÂcaesium stress. Influence ofÂpotassium supply. Biochimie, 2006, 88, 1533-1547.	2.6	79
21	CHK1 as a therapeutic target to bypass chemoresistance in AML. Science Signaling, 2016, 9, ra90.	3.6	73
22	A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer Journal, 2015, 5, e297-e297.	6.2	68
23	Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. Journal of Experimental Medicine, 2016, 213, 483-497.	8.5	68
24	The protective function of the xanthophyll cycle in photosynthesis. FEBS Letters, 1994, 353, 147-150.	2.8	67
25	Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. European Journal of Haematology, 2019, 102, 131-142.	2.2	57
26	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	8.5	56
27	Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Reports, 2021, 36, 109528.	6.4	55
28	Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood, 2013, 122, 738-748.	1.4	53
29	Antileukemic Activity of 2-Deoxy- <scp>d</scp> -Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with <i>FLT3-ITD</i> or <i>c-KIT</i> Mutations. Molecular Cancer Therapeutics, 2015, 14, 2364-2373.	4.1	52
30	Dexamethasone in hyperleukocytic acute myeloid leukemia. Haematologica, 2018, 103, 988-998.	3.5	49
31	Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2018, 19, 3325.	4.1	46
32	Targeting the SUMO Pathway Primes All- <i>trans</i> Retinoic Acid–Induced Differentiation of Nonpromyelocytic Acute Myeloid Leukemias. Cancer Research, 2018, 78, 2601-2613.	0.9	45
33	Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Research, 2019, 79, 5191-5203.	0.9	45
34	Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion, 2011, 11, 342-350.	3.4	44
35	Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1204-1223.	13.2	42
36	Extracellular ATP and CD39 Activate cAMP-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 1544-1565.	9.4	39

#	Article	IF	CITATIONS
37	Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation. Cancer & Metabolism, 2015, 3, 8.	5.0	36
38	Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells. Nature Communications, 2021, 12, 422.	12.8	36
39	Analysis of the vacuolar luminal proteome of <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2007, 274, 4287-4305.	4.7	33
40	Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biology, 2019, 17, 57.	3.8	31
41	Do AML patients with DNMT3A exon 23 mutations benefit from idarubicin as compared to daunorubicin? A single center experience. Oncotarget, 2011, 2, 850-861.	1.8	29
42	Oncogenic KIT mutations induce STAT3-dependent autophagy to support cell proliferation in acute myeloid leukemia. Oncogenesis, 2019, 8, 39.	4.9	26
43	Dynamics ofArabidopsis thaliana soluble proteome in response to different nutrient culture conditions. Electrophoresis, 2006, 27, 495-507.	2.4	24
44	RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia. Leukemia, 2018, 32, 597-605.	7.2	22
45	Inhibition of ubiquitin-specific protease 7 sensitizes acute myeloid leukemia to chemotherapy. Leukemia, 2021, 35, 417-432.	7.2	22
46	AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Reports, 2022, 38, 110197.	6.4	22
47	Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death and Disease, 2022, 13, 448.	6.3	22
48	Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia. Leukemia, 2017, 31, 755-759.	7.2	20
49	CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia. Oncotarget, 2015, 6, 38061-38078.	1.8	20
50	Mesenchymal stromal cells confer chemoresistance to myeloid leukemia blasts through Side Population functionality and ABC transporter activation. Haematologica, 2020, 105, 987-9998.	3.5	18
51	The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia, 2013, 27, 325-335.	7.2	17
52	Dendrogenin A Synergizes with Cytarabine to Kill Acute Myeloid Leukemia Cells In Vitro and In Vivo. Cancers, 2020, 12, 1725.	3.7	13
53	RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia. Leukemia, 2022, 36, 1237-1252.	7.2	12
54	Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers, 2021, 13, 3499.	3.7	10

#	Article	IF	CITATIONS
55	Dendrogenin A Enhances Anti-Leukemic Effect of Anthracycline in Acute Myeloid Leukemia. Cancers, 2020, 12, 2933.	3.7	7
56	Reference Values for Hematology, Plasma Biochemistry, Bone Marrow Cytology and Bone Histology of NOD <i>.Cg-Prkdc^{scid} ll2rg^{tm1Wjl}/</i> SzJ Immunodeficient Mice. Journal of the American Association for Laboratory Animal Science, 2021, 60, 4-17.	1.2	6
57	Activation of Vitamin D Receptor Pathway Enhances Differentiating Capacity in Acute Myeloid Leukemia with Isocitrate Dehydrogenase Mutations. Cancers, 2021, 13, 5243.	3.7	6
58	SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase. Cancers, 2021, 13, 6344.	3.7	6
59	Help from outside: cysteine to survive in AML. Blood, 2019, 134, 336-338.	1.4	5
60	Inhibition of the proteasome and proteaphagy enhances apoptosis in FLT3â€ITDâ€driven acute myeloid leukemia. FEBS Open Bio, 2021, 11, 48-60.	2.3	4
61	The Combination of ATRA and Dasatinib for Differentiation Therapy in Acute Myeloid Leukemias with IDH Mutations. Blood, 2015, 126, 2542-2542.	1.4	4
62	Microenvironmental Aspartate Preserves Leukemic Cells from Therapy-Induced Metabolic Collapse. Cell Metabolism, 2020, 32, 321-323.	16.2	3
63	Acute Myeloid Leukemia Stem Cells Cells Are Rare and Heterogeneous in Human Acute Myeloid Leukemia Blood, 2009, 114, 390-390.	1.4	3
64	Clinically Relevant Oxygraphic Assay to Assess Mitochondrial Energy Metabolism in Acute Myeloid Leukemia Patients. Cancers, 2021, 13, 6353.	3.7	3
65	Combined Mass Mapping and Biochemical Characterization of Grape β-Glycosidase-enriched Extract. Protein Journal, 2008, 27, 258-266.	1.6	2
66	Toward the Analysis of Mitochondria Isolated from Leukemic Cells with Electrochemically Instrumented Microwell Arrays. Proceedings (mdpi), 2017, 1, .	0.2	2
67	Catabolic Flexibility Enhances Drug Resistance but Induces Selective Vulnerability to New Mitochondrial-Targeted Therapeutic Combinations in IDH Mutant Leukemia. Blood, 2018, 132, 5238-5238.	1.4	2
68	Cytosine Arabinoside Chemotherapy Does Not Enrich For Leukemic Stem Cells In Xenotransplantation Model Of Human Acute Myeloid Leukemia. Blood, 2013, 122, 1651-1651.	1.4	2
69	In Vivo Response to Cytarabine Chemotherapy Uncovers the Role of the Oxidative and Energetic Metabolism in the Chemoresistance of Human Primary AML Stem Cells. Blood, 2015, 126, 4269-4269.	1.4	2
70	Dexamethasone Reduces Incidence of Relapse and Improves Overall Survival in Hyperleucocytic Acute Myeloid Leukemia. Blood, 2016, 128, 1636-1636.	1.4	2
71	Extracellular ATP and CD39 Regulates Mitochondrial Function and Cytarabine Resistance through Intrinsic PKA-ATF-PGC1a Pathway in Acute Myeloid Leukemia. Blood, 2018, 132, 2737-2737.	1.4	2
72	Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia. Haematologica, 2020, 105, e280-e284.	3.5	2

JEAN-EMMANUEL SARRY

#	Article	IF	CITATIONS
73	Adrenomedullin Receptor Calcrl Drives Drug Resistance of Leukemic Stem Cells in Acute Myeloid Leukemia. Blood, 2018, 132, 1449-1449.	1.4	1
74	A Novel Path for ATRA Differentiation Therapy in Acute Myeloid Leukemia with Isocitrate Dehydrogenase Mutations. Blood, 2014, 124, 3727-3727.	1.4	1
75	A Robust Xenotransplantation Model for Acute Myeloid Leukemia. Blood, 2008, 112, 2939-2939.	1.4	0
76	Ara-C Treatment of Acute Myeloid Leukemia Does Not Lead to Prolonged Enrichment of Stem Cells or a Cell Cycle Arrest. Blood, 2010, 116, 2178-2178.	1.4	0
77	Anti-Leukemic Activity of PIK-75, a PI3-Kinase p110α Selective Inhibitor, In Acute Myeloid Leukemia. Blood, 2010, 116, 659-659.	1.4	Ο
78	Metabolic Capability to Induce the Pasteur Effect Mediates Sensitivity of Human Leukemic Cells to Metformin. Blood, 2011, 118, 2601-2601.	1.4	0
79	Abstract 1336: Bortezomib induces the degradation of FLT3-ITD tyrosine kinase in acute myeloid leukemia through an autophagy-dependent mechanism. , 2014, , .		Ο
80	Abstract 2678: All-trans-retinoic acid as a new therapeutic approach to target isocitrate dehydrogenase mutations in acute myeloid leukemia. , 2014, , .		0
81	Dendrogenin_A : A Natural Liver X Receptor Modulator for the Treatment of Acute Myeloid Leukemia. Blood, 2014, 124, 3767-3767.	1.4	0
82	Abstract 4068:In vivoanalysis of the residual disease uncovers early and late response of cytarabine-resistant cells in human acute myeloid leukemia. , 2015, , .		0
83	Immunophenotypic-Defined Stage of Leukemia Differentiation Arrest Identifies Oncogenic and Metabolic Signatures in AML. Blood, 2015, 126, 90-90.	1.4	Ο
84	Abstract 5203: Innovative and predictive models against cancer: an IMODI integrative approach. , 2016, , .		0
85	Abstract A23: Characterization of novel molecular vulnerabilities provoking replicative and energetic stresses in pancreatic cancer cells. , 2016, , .		Ο
86	IDH1 Mutation Enhances Catabolic Flexibility and Mitochondrial Dependencies to Favor Drug Resistance in Acute Myeloid Leukemia. SSRN Electronic Journal, 0, , .	0.4	0
87	Combination of the MEK Inhibitor Trametinib and Pyrvinium Pamoate Efficiently Targets RAS Pathway-Mutated Acute Myeloid Leukemia in Preclinical Models. Blood, 2019, 134, 2671-2671.	1.4	Ο